Whakaoti mō n
n = \frac{101}{18} = 5\frac{11}{18} \approx 5.611111111
Tohaina
Kua tāruatia ki te papatopenga
93-7n-11n=-8
Tangohia te 11n mai i ngā taha e rua.
93-18n=-8
Pahekotia te -7n me -11n, ka -18n.
-18n=-8-93
Tangohia te 93 mai i ngā taha e rua.
-18n=-101
Tangohia te 93 i te -8, ka -101.
n=\frac{-101}{-18}
Whakawehea ngā taha e rua ki te -18.
n=\frac{101}{18}
Ka taea te hautanga \frac{-101}{-18} te whakamāmā ki te \frac{101}{18} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}