Aromātai
-\frac{1456}{29}+\frac{1001}{29}i\approx -50.206896552+34.517241379i
Wāhi Tūturu
-\frac{1456}{29} = -50\frac{6}{29} = -50.206896551724135
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
91 \quad ( \frac { ( 3 + 2 i ) } { ( - 2 - 5 i ) } )
Tohaina
Kua tāruatia ki te papatopenga
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)}
Me whakarea te taurunga me te tauraro o \frac{3+2i}{-2-5i} ki te haumi hiato o te tauraro, -2+5i.
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{29}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5i^{2}}{29}
Me whakarea ngā tau matatini 3+2i me -2+5i pēnā i te whakarea huarua.
91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right)}{29}
Hei tōna tikanga, ko te i^{2} ko -1.
91\times \frac{-6+15i-4i-10}{29}
Mahia ngā whakarea i roto o 3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right).
91\times \frac{-6-10+\left(15-4\right)i}{29}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -6+15i-4i-10.
91\times \frac{-16+11i}{29}
Mahia ngā tāpiri i roto o -6-10+\left(15-4\right)i.
91\left(-\frac{16}{29}+\frac{11}{29}i\right)
Whakawehea te -16+11i ki te 29, kia riro ko -\frac{16}{29}+\frac{11}{29}i.
91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right)
Whakareatia 91 ki te -\frac{16}{29}+\frac{11}{29}i.
-\frac{1456}{29}+\frac{1001}{29}i
Mahia ngā whakarea.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)})
Me whakarea te taurunga me te tauraro o \frac{3+2i}{-2-5i} ki te haumi hiato o te tauraro, -2+5i.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{29})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5i^{2}}{29})
Me whakarea ngā tau matatini 3+2i me -2+5i pēnā i te whakarea huarua.
Re(91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right)}{29})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(91\times \frac{-6+15i-4i-10}{29})
Mahia ngā whakarea i roto o 3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right).
Re(91\times \frac{-6-10+\left(15-4\right)i}{29})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -6+15i-4i-10.
Re(91\times \frac{-16+11i}{29})
Mahia ngā tāpiri i roto o -6-10+\left(15-4\right)i.
Re(91\left(-\frac{16}{29}+\frac{11}{29}i\right))
Whakawehea te -16+11i ki te 29, kia riro ko -\frac{16}{29}+\frac{11}{29}i.
Re(91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right))
Whakareatia 91 ki te -\frac{16}{29}+\frac{11}{29}i.
Re(-\frac{1456}{29}+\frac{1001}{29}i)
Mahia ngā whakarea i roto o 91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right).
-\frac{1456}{29}
Ko te wāhi tūturu o -\frac{1456}{29}+\frac{1001}{29}i ko -\frac{1456}{29}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}