Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)}
Me whakarea te taurunga me te tauraro o \frac{3+2i}{-2-5i} ki te haumi hiato o te tauraro, -2+5i.
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{29}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5i^{2}}{29}
Me whakarea ngā tau matatini 3+2i me -2+5i pēnā i te whakarea huarua.
91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right)}{29}
Hei tōna tikanga, ko te i^{2} ko -1.
91\times \frac{-6+15i-4i-10}{29}
Mahia ngā whakarea i roto o 3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right).
91\times \frac{-6-10+\left(15-4\right)i}{29}
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -6+15i-4i-10.
91\times \frac{-16+11i}{29}
Mahia ngā tāpiri i roto o -6-10+\left(15-4\right)i.
91\left(-\frac{16}{29}+\frac{11}{29}i\right)
Whakawehea te -16+11i ki te 29, kia riro ko -\frac{16}{29}+\frac{11}{29}i.
91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right)
Whakareatia 91 ki te -\frac{16}{29}+\frac{11}{29}i.
-\frac{1456}{29}+\frac{1001}{29}i
Mahia ngā whakarea.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2-5i\right)\left(-2+5i\right)})
Me whakarea te taurunga me te tauraro o \frac{3+2i}{-2-5i} ki te haumi hiato o te tauraro, -2+5i.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{\left(-2\right)^{2}-5^{2}i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(91\times \frac{\left(3+2i\right)\left(-2+5i\right)}{29})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5i^{2}}{29})
Me whakarea ngā tau matatini 3+2i me -2+5i pēnā i te whakarea huarua.
Re(91\times \frac{3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right)}{29})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(91\times \frac{-6+15i-4i-10}{29})
Mahia ngā whakarea i roto o 3\left(-2\right)+3\times \left(5i\right)+2i\left(-2\right)+2\times 5\left(-1\right).
Re(91\times \frac{-6-10+\left(15-4\right)i}{29})
Whakakotahitia ngā wāhi tūturu me ngā wāhi pōhewa ki -6+15i-4i-10.
Re(91\times \frac{-16+11i}{29})
Mahia ngā tāpiri i roto o -6-10+\left(15-4\right)i.
Re(91\left(-\frac{16}{29}+\frac{11}{29}i\right))
Whakawehea te -16+11i ki te 29, kia riro ko -\frac{16}{29}+\frac{11}{29}i.
Re(91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right))
Whakareatia 91 ki te -\frac{16}{29}+\frac{11}{29}i.
Re(-\frac{1456}{29}+\frac{1001}{29}i)
Mahia ngā whakarea i roto o 91\left(-\frac{16}{29}\right)+91\times \left(\frac{11}{29}i\right).
-\frac{1456}{29}
Ko te wāhi tūturu o -\frac{1456}{29}+\frac{1001}{29}i ko -\frac{1456}{29}.