Whakaoti mō x
x=\frac{1}{25}=0.04
x=\frac{1}{9}\approx 0.111111111
Graph
Tohaina
Kua tāruatia ki te papatopenga
900x^{2}-136x+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-136\right)±\sqrt{\left(-136\right)^{2}-4\times 900\times 4}}{2\times 900}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 900 mō a, -136 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-136\right)±\sqrt{18496-4\times 900\times 4}}{2\times 900}
Pūrua -136.
x=\frac{-\left(-136\right)±\sqrt{18496-3600\times 4}}{2\times 900}
Whakareatia -4 ki te 900.
x=\frac{-\left(-136\right)±\sqrt{18496-14400}}{2\times 900}
Whakareatia -3600 ki te 4.
x=\frac{-\left(-136\right)±\sqrt{4096}}{2\times 900}
Tāpiri 18496 ki te -14400.
x=\frac{-\left(-136\right)±64}{2\times 900}
Tuhia te pūtakerua o te 4096.
x=\frac{136±64}{2\times 900}
Ko te tauaro o -136 ko 136.
x=\frac{136±64}{1800}
Whakareatia 2 ki te 900.
x=\frac{200}{1800}
Nā, me whakaoti te whārite x=\frac{136±64}{1800} ina he tāpiri te ±. Tāpiri 136 ki te 64.
x=\frac{1}{9}
Whakahekea te hautanga \frac{200}{1800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 200.
x=\frac{72}{1800}
Nā, me whakaoti te whārite x=\frac{136±64}{1800} ina he tango te ±. Tango 64 mai i 136.
x=\frac{1}{25}
Whakahekea te hautanga \frac{72}{1800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 72.
x=\frac{1}{9} x=\frac{1}{25}
Kua oti te whārite te whakatau.
900x^{2}-136x+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
900x^{2}-136x+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
900x^{2}-136x=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{900x^{2}-136x}{900}=-\frac{4}{900}
Whakawehea ngā taha e rua ki te 900.
x^{2}+\left(-\frac{136}{900}\right)x=-\frac{4}{900}
Mā te whakawehe ki te 900 ka wetekia te whakareanga ki te 900.
x^{2}-\frac{34}{225}x=-\frac{4}{900}
Whakahekea te hautanga \frac{-136}{900} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{34}{225}x=-\frac{1}{225}
Whakahekea te hautanga \frac{-4}{900} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{34}{225}x+\left(-\frac{17}{225}\right)^{2}=-\frac{1}{225}+\left(-\frac{17}{225}\right)^{2}
Whakawehea te -\frac{34}{225}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{17}{225}. Nā, tāpiria te pūrua o te -\frac{17}{225} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{34}{225}x+\frac{289}{50625}=-\frac{1}{225}+\frac{289}{50625}
Pūruatia -\frac{17}{225} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{34}{225}x+\frac{289}{50625}=\frac{64}{50625}
Tāpiri -\frac{1}{225} ki te \frac{289}{50625} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{17}{225}\right)^{2}=\frac{64}{50625}
Tauwehea x^{2}-\frac{34}{225}x+\frac{289}{50625}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{225}\right)^{2}}=\sqrt{\frac{64}{50625}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{17}{225}=\frac{8}{225} x-\frac{17}{225}=-\frac{8}{225}
Whakarūnātia.
x=\frac{1}{9} x=\frac{1}{25}
Me tāpiri \frac{17}{225} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}