Whakaoti mō x
x=\frac{\sqrt{235}}{30}+\frac{19}{2}\approx 10.010990324
x=-\frac{\sqrt{235}}{30}+\frac{19}{2}\approx 8.989009676
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(90x-900\right)\left(x-9\right)=1
Whakamahia te āhuatanga tohatoha hei whakarea te 90 ki te x-10.
90x^{2}-1710x+8100=1
Whakamahia te āhuatanga tuaritanga hei whakarea te 90x-900 ki te x-9 ka whakakotahi i ngā kupu rite.
90x^{2}-1710x+8100-1=0
Tangohia te 1 mai i ngā taha e rua.
90x^{2}-1710x+8099=0
Tangohia te 1 i te 8100, ka 8099.
x=\frac{-\left(-1710\right)±\sqrt{\left(-1710\right)^{2}-4\times 90\times 8099}}{2\times 90}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 90 mō a, -1710 mō b, me 8099 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1710\right)±\sqrt{2924100-4\times 90\times 8099}}{2\times 90}
Pūrua -1710.
x=\frac{-\left(-1710\right)±\sqrt{2924100-360\times 8099}}{2\times 90}
Whakareatia -4 ki te 90.
x=\frac{-\left(-1710\right)±\sqrt{2924100-2915640}}{2\times 90}
Whakareatia -360 ki te 8099.
x=\frac{-\left(-1710\right)±\sqrt{8460}}{2\times 90}
Tāpiri 2924100 ki te -2915640.
x=\frac{-\left(-1710\right)±6\sqrt{235}}{2\times 90}
Tuhia te pūtakerua o te 8460.
x=\frac{1710±6\sqrt{235}}{2\times 90}
Ko te tauaro o -1710 ko 1710.
x=\frac{1710±6\sqrt{235}}{180}
Whakareatia 2 ki te 90.
x=\frac{6\sqrt{235}+1710}{180}
Nā, me whakaoti te whārite x=\frac{1710±6\sqrt{235}}{180} ina he tāpiri te ±. Tāpiri 1710 ki te 6\sqrt{235}.
x=\frac{\sqrt{235}}{30}+\frac{19}{2}
Whakawehe 1710+6\sqrt{235} ki te 180.
x=\frac{1710-6\sqrt{235}}{180}
Nā, me whakaoti te whārite x=\frac{1710±6\sqrt{235}}{180} ina he tango te ±. Tango 6\sqrt{235} mai i 1710.
x=-\frac{\sqrt{235}}{30}+\frac{19}{2}
Whakawehe 1710-6\sqrt{235} ki te 180.
x=\frac{\sqrt{235}}{30}+\frac{19}{2} x=-\frac{\sqrt{235}}{30}+\frac{19}{2}
Kua oti te whārite te whakatau.
\left(90x-900\right)\left(x-9\right)=1
Whakamahia te āhuatanga tohatoha hei whakarea te 90 ki te x-10.
90x^{2}-1710x+8100=1
Whakamahia te āhuatanga tuaritanga hei whakarea te 90x-900 ki te x-9 ka whakakotahi i ngā kupu rite.
90x^{2}-1710x=1-8100
Tangohia te 8100 mai i ngā taha e rua.
90x^{2}-1710x=-8099
Tangohia te 8100 i te 1, ka -8099.
\frac{90x^{2}-1710x}{90}=-\frac{8099}{90}
Whakawehea ngā taha e rua ki te 90.
x^{2}+\left(-\frac{1710}{90}\right)x=-\frac{8099}{90}
Mā te whakawehe ki te 90 ka wetekia te whakareanga ki te 90.
x^{2}-19x=-\frac{8099}{90}
Whakawehe -1710 ki te 90.
x^{2}-19x+\left(-\frac{19}{2}\right)^{2}=-\frac{8099}{90}+\left(-\frac{19}{2}\right)^{2}
Whakawehea te -19, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{19}{2}. Nā, tāpiria te pūrua o te -\frac{19}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-19x+\frac{361}{4}=-\frac{8099}{90}+\frac{361}{4}
Pūruatia -\frac{19}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-19x+\frac{361}{4}=\frac{47}{180}
Tāpiri -\frac{8099}{90} ki te \frac{361}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{19}{2}\right)^{2}=\frac{47}{180}
Tauwehea x^{2}-19x+\frac{361}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{2}\right)^{2}}=\sqrt{\frac{47}{180}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{19}{2}=\frac{\sqrt{235}}{30} x-\frac{19}{2}=-\frac{\sqrt{235}}{30}
Whakarūnātia.
x=\frac{\sqrt{235}}{30}+\frac{19}{2} x=-\frac{\sqrt{235}}{30}+\frac{19}{2}
Me tāpiri \frac{19}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}