Whakaoti mō x
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
9-2x-6=x-\left(3+6x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+3.
3-2x=x-\left(3+6x\right)
Tangohia te 6 i te 9, ka 3.
3-2x=x-3-6x
Hei kimi i te tauaro o 3+6x, kimihia te tauaro o ia taurangi.
3-2x=-5x-3
Pahekotia te x me -6x, ka -5x.
3-2x+5x=-3
Me tāpiri te 5x ki ngā taha e rua.
3+3x=-3
Pahekotia te -2x me 5x, ka 3x.
3x=-3-3
Tangohia te 3 mai i ngā taha e rua.
3x=-6
Tangohia te 3 i te -3, ka -6.
x=\frac{-6}{3}
Whakawehea ngā taha e rua ki te 3.
x=-2
Whakawehea te -6 ki te 3, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}