Whakaoti mō x
x=-9
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
18=4x\left(-5-\frac{x}{2}\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
18=-20x+4x\left(-\frac{x}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te -5-\frac{x}{2}.
18=-20x-2xx
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
18=-20x-2x^{2}
Whakareatia te x ki te x, ka x^{2}.
-20x-2x^{2}=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-20x-2x^{2}-18=0
Tangohia te 18 mai i ngā taha e rua.
-2x^{2}-20x-18=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, -20 mō b, me -18 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\left(-2\right)\left(-18\right)}}{2\left(-2\right)}
Pūrua -20.
x=\frac{-\left(-20\right)±\sqrt{400+8\left(-18\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-\left(-20\right)±\sqrt{400-144}}{2\left(-2\right)}
Whakareatia 8 ki te -18.
x=\frac{-\left(-20\right)±\sqrt{256}}{2\left(-2\right)}
Tāpiri 400 ki te -144.
x=\frac{-\left(-20\right)±16}{2\left(-2\right)}
Tuhia te pūtakerua o te 256.
x=\frac{20±16}{2\left(-2\right)}
Ko te tauaro o -20 ko 20.
x=\frac{20±16}{-4}
Whakareatia 2 ki te -2.
x=\frac{36}{-4}
Nā, me whakaoti te whārite x=\frac{20±16}{-4} ina he tāpiri te ±. Tāpiri 20 ki te 16.
x=-9
Whakawehe 36 ki te -4.
x=\frac{4}{-4}
Nā, me whakaoti te whārite x=\frac{20±16}{-4} ina he tango te ±. Tango 16 mai i 20.
x=-1
Whakawehe 4 ki te -4.
x=-9 x=-1
Kua oti te whārite te whakatau.
18=4x\left(-5-\frac{x}{2}\right)
Whakareatia ngā taha e rua o te whārite ki te 2.
18=-20x+4x\left(-\frac{x}{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te -5-\frac{x}{2}.
18=-20x-2xx
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 4 me te 2.
18=-20x-2x^{2}
Whakareatia te x ki te x, ka x^{2}.
-20x-2x^{2}=18
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2x^{2}-20x=18
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-2x^{2}-20x}{-2}=\frac{18}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\left(-\frac{20}{-2}\right)x=\frac{18}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}+10x=\frac{18}{-2}
Whakawehe -20 ki te -2.
x^{2}+10x=-9
Whakawehe 18 ki te -2.
x^{2}+10x+5^{2}=-9+5^{2}
Whakawehea te 10, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 5. Nā, tāpiria te pūrua o te 5 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+10x+25=-9+25
Pūrua 5.
x^{2}+10x+25=16
Tāpiri -9 ki te 25.
\left(x+5\right)^{2}=16
Tauwehea x^{2}+10x+25. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+5=4 x+5=-4
Whakarūnātia.
x=-1 x=-9
Me tango 5 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}