Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-42 ab=9\times 49=441
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 9z^{2}+az+bz+49. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-441 -3,-147 -7,-63 -9,-49 -21,-21
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 441.
-1-441=-442 -3-147=-150 -7-63=-70 -9-49=-58 -21-21=-42
Tātaihia te tapeke mō ia takirua.
a=-21 b=-21
Ko te otinga te takirua ka hoatu i te tapeke -42.
\left(9z^{2}-21z\right)+\left(-21z+49\right)
Tuhia anō te 9z^{2}-42z+49 hei \left(9z^{2}-21z\right)+\left(-21z+49\right).
3z\left(3z-7\right)-7\left(3z-7\right)
Tauwehea te 3z i te tuatahi me te -7 i te rōpū tuarua.
\left(3z-7\right)\left(3z-7\right)
Whakatauwehea atu te kīanga pātahi 3z-7 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3z-7\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(9z^{2}-42z+49)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(9,-42,49)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{9z^{2}}=3z
Kimihia te pūtakerua o te kīanga tau ārahi, 9z^{2}.
\sqrt{49}=7
Kimihia te pūtakerua o te kīanga tau autō, 49.
\left(3z-7\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
9z^{2}-42z+49=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 9\times 49}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-42\right)±\sqrt{1764-4\times 9\times 49}}{2\times 9}
Pūrua -42.
z=\frac{-\left(-42\right)±\sqrt{1764-36\times 49}}{2\times 9}
Whakareatia -4 ki te 9.
z=\frac{-\left(-42\right)±\sqrt{1764-1764}}{2\times 9}
Whakareatia -36 ki te 49.
z=\frac{-\left(-42\right)±\sqrt{0}}{2\times 9}
Tāpiri 1764 ki te -1764.
z=\frac{-\left(-42\right)±0}{2\times 9}
Tuhia te pūtakerua o te 0.
z=\frac{42±0}{2\times 9}
Ko te tauaro o -42 ko 42.
z=\frac{42±0}{18}
Whakareatia 2 ki te 9.
9z^{2}-42z+49=9\left(z-\frac{7}{3}\right)\left(z-\frac{7}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{7}{3} mō te x_{1} me te \frac{7}{3} mō te x_{2}.
9z^{2}-42z+49=9\times \frac{3z-7}{3}\left(z-\frac{7}{3}\right)
Tango \frac{7}{3} mai i z mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9z^{2}-42z+49=9\times \frac{3z-7}{3}\times \frac{3z-7}{3}
Tango \frac{7}{3} mai i z mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9z^{2}-42z+49=9\times \frac{\left(3z-7\right)\left(3z-7\right)}{3\times 3}
Whakareatia \frac{3z-7}{3} ki te \frac{3z-7}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9z^{2}-42z+49=9\times \frac{\left(3z-7\right)\left(3z-7\right)}{9}
Whakareatia 3 ki te 3.
9z^{2}-42z+49=\left(3z-7\right)\left(3z-7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.