Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-17 ab=9\left(-2\right)=-18
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 9z^{2}+az+bz-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-18 2,-9 3,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
1-18=-17 2-9=-7 3-6=-3
Tātaihia te tapeke mō ia takirua.
a=-18 b=1
Ko te otinga te takirua ka hoatu i te tapeke -17.
\left(9z^{2}-18z\right)+\left(z-2\right)
Tuhia anō te 9z^{2}-17z-2 hei \left(9z^{2}-18z\right)+\left(z-2\right).
9z\left(z-2\right)+z-2
Whakatauwehea atu 9z i te 9z^{2}-18z.
\left(z-2\right)\left(9z+1\right)
Whakatauwehea atu te kīanga pātahi z-2 mā te whakamahi i te āhuatanga tātai tohatoha.
9z^{2}-17z-2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-17\right)±\sqrt{289-4\times 9\left(-2\right)}}{2\times 9}
Pūrua -17.
z=\frac{-\left(-17\right)±\sqrt{289-36\left(-2\right)}}{2\times 9}
Whakareatia -4 ki te 9.
z=\frac{-\left(-17\right)±\sqrt{289+72}}{2\times 9}
Whakareatia -36 ki te -2.
z=\frac{-\left(-17\right)±\sqrt{361}}{2\times 9}
Tāpiri 289 ki te 72.
z=\frac{-\left(-17\right)±19}{2\times 9}
Tuhia te pūtakerua o te 361.
z=\frac{17±19}{2\times 9}
Ko te tauaro o -17 ko 17.
z=\frac{17±19}{18}
Whakareatia 2 ki te 9.
z=\frac{36}{18}
Nā, me whakaoti te whārite z=\frac{17±19}{18} ina he tāpiri te ±. Tāpiri 17 ki te 19.
z=2
Whakawehe 36 ki te 18.
z=-\frac{2}{18}
Nā, me whakaoti te whārite z=\frac{17±19}{18} ina he tango te ±. Tango 19 mai i 17.
z=-\frac{1}{9}
Whakahekea te hautanga \frac{-2}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
9z^{2}-17z-2=9\left(z-2\right)\left(z-\left(-\frac{1}{9}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te -\frac{1}{9} mō te x_{2}.
9z^{2}-17z-2=9\left(z-2\right)\left(z+\frac{1}{9}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
9z^{2}-17z-2=9\left(z-2\right)\times \frac{9z+1}{9}
Tāpiri \frac{1}{9} ki te z mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9z^{2}-17z-2=\left(z-2\right)\left(9z+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.