Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-12 ab=9\times 4=36
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 9y^{2}+ay+by+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-6 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(9y^{2}-6y\right)+\left(-6y+4\right)
Tuhia anō te 9y^{2}-12y+4 hei \left(9y^{2}-6y\right)+\left(-6y+4\right).
3y\left(3y-2\right)-2\left(3y-2\right)
Tauwehea te 3y i te tuatahi me te -2 i te rōpū tuarua.
\left(3y-2\right)\left(3y-2\right)
Whakatauwehea atu te kīanga pātahi 3y-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3y-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(9y^{2}-12y+4)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(9,-12,4)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{9y^{2}}=3y
Kimihia te pūtakerua o te kīanga tau ārahi, 9y^{2}.
\sqrt{4}=2
Kimihia te pūtakerua o te kīanga tau autō, 4.
\left(3y-2\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
9y^{2}-12y+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 4}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 4}}{2\times 9}
Pūrua -12.
y=\frac{-\left(-12\right)±\sqrt{144-36\times 4}}{2\times 9}
Whakareatia -4 ki te 9.
y=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 9}
Whakareatia -36 ki te 4.
y=\frac{-\left(-12\right)±\sqrt{0}}{2\times 9}
Tāpiri 144 ki te -144.
y=\frac{-\left(-12\right)±0}{2\times 9}
Tuhia te pūtakerua o te 0.
y=\frac{12±0}{2\times 9}
Ko te tauaro o -12 ko 12.
y=\frac{12±0}{18}
Whakareatia 2 ki te 9.
9y^{2}-12y+4=9\left(y-\frac{2}{3}\right)\left(y-\frac{2}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{3} mō te x_{1} me te \frac{2}{3} mō te x_{2}.
9y^{2}-12y+4=9\times \frac{3y-2}{3}\left(y-\frac{2}{3}\right)
Tango \frac{2}{3} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9y^{2}-12y+4=9\times \frac{3y-2}{3}\times \frac{3y-2}{3}
Tango \frac{2}{3} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9y^{2}-12y+4=9\times \frac{\left(3y-2\right)\left(3y-2\right)}{3\times 3}
Whakareatia \frac{3y-2}{3} ki te \frac{3y-2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9y^{2}-12y+4=9\times \frac{\left(3y-2\right)\left(3y-2\right)}{9}
Whakareatia 3 ki te 3.
9y^{2}-12y+4=\left(3y-2\right)\left(3y-2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.