Whakaoti mō y
y = \frac{\sqrt{2} + 2}{3} \approx 1.138071187
y=\frac{2-\sqrt{2}}{3}\approx 0.195262146
Graph
Tohaina
Kua tāruatia ki te papatopenga
9y^{2}-12y+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 2}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -12 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 2}}{2\times 9}
Pūrua -12.
y=\frac{-\left(-12\right)±\sqrt{144-36\times 2}}{2\times 9}
Whakareatia -4 ki te 9.
y=\frac{-\left(-12\right)±\sqrt{144-72}}{2\times 9}
Whakareatia -36 ki te 2.
y=\frac{-\left(-12\right)±\sqrt{72}}{2\times 9}
Tāpiri 144 ki te -72.
y=\frac{-\left(-12\right)±6\sqrt{2}}{2\times 9}
Tuhia te pūtakerua o te 72.
y=\frac{12±6\sqrt{2}}{2\times 9}
Ko te tauaro o -12 ko 12.
y=\frac{12±6\sqrt{2}}{18}
Whakareatia 2 ki te 9.
y=\frac{6\sqrt{2}+12}{18}
Nā, me whakaoti te whārite y=\frac{12±6\sqrt{2}}{18} ina he tāpiri te ±. Tāpiri 12 ki te 6\sqrt{2}.
y=\frac{\sqrt{2}+2}{3}
Whakawehe 12+6\sqrt{2} ki te 18.
y=\frac{12-6\sqrt{2}}{18}
Nā, me whakaoti te whārite y=\frac{12±6\sqrt{2}}{18} ina he tango te ±. Tango 6\sqrt{2} mai i 12.
y=\frac{2-\sqrt{2}}{3}
Whakawehe 12-6\sqrt{2} ki te 18.
y=\frac{\sqrt{2}+2}{3} y=\frac{2-\sqrt{2}}{3}
Kua oti te whārite te whakatau.
9y^{2}-12y+2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9y^{2}-12y+2-2=-2
Me tango 2 mai i ngā taha e rua o te whārite.
9y^{2}-12y=-2
Mā te tango i te 2 i a ia ake anō ka toe ko te 0.
\frac{9y^{2}-12y}{9}=-\frac{2}{9}
Whakawehea ngā taha e rua ki te 9.
y^{2}+\left(-\frac{12}{9}\right)y=-\frac{2}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
y^{2}-\frac{4}{3}y=-\frac{2}{9}
Whakahekea te hautanga \frac{-12}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
y^{2}-\frac{4}{3}y+\left(-\frac{2}{3}\right)^{2}=-\frac{2}{9}+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}-\frac{4}{3}y+\frac{4}{9}=\frac{-2+4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}-\frac{4}{3}y+\frac{4}{9}=\frac{2}{9}
Tāpiri -\frac{2}{9} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y-\frac{2}{3}\right)^{2}=\frac{2}{9}
Tauwehea y^{2}-\frac{4}{3}y+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{2}{3}\right)^{2}}=\sqrt{\frac{2}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y-\frac{2}{3}=\frac{\sqrt{2}}{3} y-\frac{2}{3}=-\frac{\sqrt{2}}{3}
Whakarūnātia.
y=\frac{\sqrt{2}+2}{3} y=\frac{2-\sqrt{2}}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}