Tauwehe
3\left(3y-2\right)\left(y+9\right)
Aromātai
3\left(3y-2\right)\left(y+9\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(3y^{2}+25y-18\right)
Tauwehea te 3.
a+b=25 ab=3\left(-18\right)=-54
Whakaarohia te 3y^{2}+25y-18. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3y^{2}+ay+by-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,54 -2,27 -3,18 -6,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -54.
-1+54=53 -2+27=25 -3+18=15 -6+9=3
Tātaihia te tapeke mō ia takirua.
a=-2 b=27
Ko te otinga te takirua ka hoatu i te tapeke 25.
\left(3y^{2}-2y\right)+\left(27y-18\right)
Tuhia anō te 3y^{2}+25y-18 hei \left(3y^{2}-2y\right)+\left(27y-18\right).
y\left(3y-2\right)+9\left(3y-2\right)
Tauwehea te y i te tuatahi me te 9 i te rōpū tuarua.
\left(3y-2\right)\left(y+9\right)
Whakatauwehea atu te kīanga pātahi 3y-2 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(3y-2\right)\left(y+9\right)
Me tuhi anō te kīanga whakatauwehe katoa.
9y^{2}+75y-54=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-75±\sqrt{75^{2}-4\times 9\left(-54\right)}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-75±\sqrt{5625-4\times 9\left(-54\right)}}{2\times 9}
Pūrua 75.
y=\frac{-75±\sqrt{5625-36\left(-54\right)}}{2\times 9}
Whakareatia -4 ki te 9.
y=\frac{-75±\sqrt{5625+1944}}{2\times 9}
Whakareatia -36 ki te -54.
y=\frac{-75±\sqrt{7569}}{2\times 9}
Tāpiri 5625 ki te 1944.
y=\frac{-75±87}{2\times 9}
Tuhia te pūtakerua o te 7569.
y=\frac{-75±87}{18}
Whakareatia 2 ki te 9.
y=\frac{12}{18}
Nā, me whakaoti te whārite y=\frac{-75±87}{18} ina he tāpiri te ±. Tāpiri -75 ki te 87.
y=\frac{2}{3}
Whakahekea te hautanga \frac{12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
y=-\frac{162}{18}
Nā, me whakaoti te whārite y=\frac{-75±87}{18} ina he tango te ±. Tango 87 mai i -75.
y=-9
Whakawehe -162 ki te 18.
9y^{2}+75y-54=9\left(y-\frac{2}{3}\right)\left(y-\left(-9\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{3} mō te x_{1} me te -9 mō te x_{2}.
9y^{2}+75y-54=9\left(y-\frac{2}{3}\right)\left(y+9\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
9y^{2}+75y-54=9\times \frac{3y-2}{3}\left(y+9\right)
Tango \frac{2}{3} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9y^{2}+75y-54=3\left(3y-2\right)\left(y+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 9 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}