Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x-7x-21+\left(x+3\right)^{2}+x+3\times 1=x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te x+3.
2x-21+\left(x+3\right)^{2}+x+3\times 1=x^{2}
Pahekotia te 9x me -7x, ka 2x.
2x-21+x^{2}+6x+9+x+3\times 1=x^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+3\right)^{2}.
8x-21+x^{2}+9+x+3\times 1=x^{2}
Pahekotia te 2x me 6x, ka 8x.
8x-12+x^{2}+x+3\times 1=x^{2}
Tāpirihia te -21 ki te 9, ka -12.
9x-12+x^{2}+3\times 1=x^{2}
Pahekotia te 8x me x, ka 9x.
9x-12+x^{2}+3=x^{2}
Whakareatia te 3 ki te 1, ka 3.
9x-9+x^{2}=x^{2}
Tāpirihia te -12 ki te 3, ka -9.
9x-9+x^{2}-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
9x-9=0
Pahekotia te x^{2} me -x^{2}, ka 0.
9x=9
Me tāpiri te 9 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{9}{9}
Whakawehea ngā taha e rua ki te 9.
x=1
Whakawehea te 9 ki te 9, kia riro ko 1.