Whakaoti mō x
x>\frac{1}{6}
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x-1<\frac{3}{4}\times 16x+\frac{3}{4}\left(-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te 16x-2.
9x-1<\frac{3\times 16}{4}x+\frac{3}{4}\left(-2\right)
Tuhia te \frac{3}{4}\times 16 hei hautanga kotahi.
9x-1<\frac{48}{4}x+\frac{3}{4}\left(-2\right)
Whakareatia te 3 ki te 16, ka 48.
9x-1<12x+\frac{3}{4}\left(-2\right)
Whakawehea te 48 ki te 4, kia riro ko 12.
9x-1<12x+\frac{3\left(-2\right)}{4}
Tuhia te \frac{3}{4}\left(-2\right) hei hautanga kotahi.
9x-1<12x+\frac{-6}{4}
Whakareatia te 3 ki te -2, ka -6.
9x-1<12x-\frac{3}{2}
Whakahekea te hautanga \frac{-6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
9x-1-12x<-\frac{3}{2}
Tangohia te 12x mai i ngā taha e rua.
-3x-1<-\frac{3}{2}
Pahekotia te 9x me -12x, ka -3x.
-3x<-\frac{3}{2}+1
Me tāpiri te 1 ki ngā taha e rua.
-3x<-\frac{3}{2}+\frac{2}{2}
Me tahuri te 1 ki te hautau \frac{2}{2}.
-3x<\frac{-3+2}{2}
Tā te mea he rite te tauraro o -\frac{3}{2} me \frac{2}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-3x<-\frac{1}{2}
Tāpirihia te -3 ki te 2, ka -1.
x>\frac{-\frac{1}{2}}{-3}
Whakawehea ngā taha e rua ki te -3. I te mea he tōraro a -3, ka huri te ahunga koreōrite.
x>\frac{-1}{2\left(-3\right)}
Tuhia te \frac{-\frac{1}{2}}{-3} hei hautanga kotahi.
x>\frac{-1}{-6}
Whakareatia te 2 ki te -3, ka -6.
x>\frac{1}{6}
Ka taea te hautanga \frac{-1}{-6} te whakamāmā ki te \frac{1}{6} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}