Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9t^{2}+5t-4=0
Whakakapia te t mō te x^{2}.
t=\frac{-5±\sqrt{5^{2}-4\times 9\left(-4\right)}}{2\times 9}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 9 mō te a, te 5 mō te b, me te -4 mō te c i te ture pūrua.
t=\frac{-5±13}{18}
Mahia ngā tātaitai.
t=\frac{4}{9} t=-1
Whakaotia te whārite t=\frac{-5±13}{18} ina he tōrunga te ±, ina he tōraro te ±.
x=-\frac{2}{3} x=\frac{2}{3} x=-i x=i
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō ia t.
9t^{2}+5t-4=0
Whakakapia te t mō te x^{2}.
t=\frac{-5±\sqrt{5^{2}-4\times 9\left(-4\right)}}{2\times 9}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 9 mō te a, te 5 mō te b, me te -4 mō te c i te ture pūrua.
t=\frac{-5±13}{18}
Mahia ngā tātaitai.
t=\frac{4}{9} t=-1
Whakaotia te whārite t=\frac{-5±13}{18} ina he tōrunga te ±, ina he tōraro te ±.
x=\frac{2}{3} x=-\frac{2}{3}
I te mea ko x=t^{2}, ka riro ngā otinga mā te arotake i te x=±\sqrt{t} mō t tōrunga.