Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9\left(x^{2}-x-6\right)
Tauwehea te 9.
a+b=-1 ab=1\left(-6\right)=-6
Whakaarohia te x^{2}-x-6. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-3 b=2
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Tuhia anō te x^{2}-x-6 hei \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-3\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
9\left(x-3\right)\left(x+2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
9x^{2}-9x-54=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 9\left(-54\right)}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 9\left(-54\right)}}{2\times 9}
Pūrua -9.
x=\frac{-\left(-9\right)±\sqrt{81-36\left(-54\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-9\right)±\sqrt{81+1944}}{2\times 9}
Whakareatia -36 ki te -54.
x=\frac{-\left(-9\right)±\sqrt{2025}}{2\times 9}
Tāpiri 81 ki te 1944.
x=\frac{-\left(-9\right)±45}{2\times 9}
Tuhia te pūtakerua o te 2025.
x=\frac{9±45}{2\times 9}
Ko te tauaro o -9 ko 9.
x=\frac{9±45}{18}
Whakareatia 2 ki te 9.
x=\frac{54}{18}
Nā, me whakaoti te whārite x=\frac{9±45}{18} ina he tāpiri te ±. Tāpiri 9 ki te 45.
x=3
Whakawehe 54 ki te 18.
x=-\frac{36}{18}
Nā, me whakaoti te whārite x=\frac{9±45}{18} ina he tango te ±. Tango 45 mai i 9.
x=-2
Whakawehe -36 ki te 18.
9x^{2}-9x-54=9\left(x-3\right)\left(x-\left(-2\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te -2 mō te x_{2}.
9x^{2}-9x-54=9\left(x-3\right)\left(x+2\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.