Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-6 ab=9\left(-35\right)=-315
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 9x^{2}+ax+bx-35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-315 3,-105 5,-63 7,-45 9,-35 15,-21
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -315.
1-315=-314 3-105=-102 5-63=-58 7-45=-38 9-35=-26 15-21=-6
Tātaihia te tapeke mō ia takirua.
a=-21 b=15
Ko te otinga te takirua ka hoatu i te tapeke -6.
\left(9x^{2}-21x\right)+\left(15x-35\right)
Tuhia anō te 9x^{2}-6x-35 hei \left(9x^{2}-21x\right)+\left(15x-35\right).
3x\left(3x-7\right)+5\left(3x-7\right)
Tauwehea te 3x i te tuatahi me te 5 i te rōpū tuarua.
\left(3x-7\right)\left(3x+5\right)
Whakatauwehea atu te kīanga pātahi 3x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
9x^{2}-6x-35=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\left(-35\right)}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\left(-35\right)}}{2\times 9}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-36\left(-35\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-6\right)±\sqrt{36+1260}}{2\times 9}
Whakareatia -36 ki te -35.
x=\frac{-\left(-6\right)±\sqrt{1296}}{2\times 9}
Tāpiri 36 ki te 1260.
x=\frac{-\left(-6\right)±36}{2\times 9}
Tuhia te pūtakerua o te 1296.
x=\frac{6±36}{2\times 9}
Ko te tauaro o -6 ko 6.
x=\frac{6±36}{18}
Whakareatia 2 ki te 9.
x=\frac{42}{18}
Nā, me whakaoti te whārite x=\frac{6±36}{18} ina he tāpiri te ±. Tāpiri 6 ki te 36.
x=\frac{7}{3}
Whakahekea te hautanga \frac{42}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{30}{18}
Nā, me whakaoti te whārite x=\frac{6±36}{18} ina he tango te ±. Tango 36 mai i 6.
x=-\frac{5}{3}
Whakahekea te hautanga \frac{-30}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9x^{2}-6x-35=9\left(x-\frac{7}{3}\right)\left(x-\left(-\frac{5}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{7}{3} mō te x_{1} me te -\frac{5}{3} mō te x_{2}.
9x^{2}-6x-35=9\left(x-\frac{7}{3}\right)\left(x+\frac{5}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
9x^{2}-6x-35=9\times \frac{3x-7}{3}\left(x+\frac{5}{3}\right)
Tango \frac{7}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-6x-35=9\times \frac{3x-7}{3}\times \frac{3x+5}{3}
Tāpiri \frac{5}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-6x-35=9\times \frac{\left(3x-7\right)\left(3x+5\right)}{3\times 3}
Whakareatia \frac{3x-7}{3} ki te \frac{3x+5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-6x-35=9\times \frac{\left(3x-7\right)\left(3x+5\right)}{9}
Whakareatia 3 ki te 3.
9x^{2}-6x-35=\left(3x-7\right)\left(3x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.