Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x^{2}-6x+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\times 3}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -6 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\times 3}}{2\times 9}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-36\times 3}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-6\right)±\sqrt{36-108}}{2\times 9}
Whakareatia -36 ki te 3.
x=\frac{-\left(-6\right)±\sqrt{-72}}{2\times 9}
Tāpiri 36 ki te -108.
x=\frac{-\left(-6\right)±6\sqrt{2}i}{2\times 9}
Tuhia te pūtakerua o te -72.
x=\frac{6±6\sqrt{2}i}{2\times 9}
Ko te tauaro o -6 ko 6.
x=\frac{6±6\sqrt{2}i}{18}
Whakareatia 2 ki te 9.
x=\frac{6+6\sqrt{2}i}{18}
Nā, me whakaoti te whārite x=\frac{6±6\sqrt{2}i}{18} ina he tāpiri te ±. Tāpiri 6 ki te 6i\sqrt{2}.
x=\frac{1+\sqrt{2}i}{3}
Whakawehe 6+6i\sqrt{2} ki te 18.
x=\frac{-6\sqrt{2}i+6}{18}
Nā, me whakaoti te whārite x=\frac{6±6\sqrt{2}i}{18} ina he tango te ±. Tango 6i\sqrt{2} mai i 6.
x=\frac{-\sqrt{2}i+1}{3}
Whakawehe 6-6i\sqrt{2} ki te 18.
x=\frac{1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+1}{3}
Kua oti te whārite te whakatau.
9x^{2}-6x+3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9x^{2}-6x+3-3=-3
Me tango 3 mai i ngā taha e rua o te whārite.
9x^{2}-6x=-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
\frac{9x^{2}-6x}{9}=-\frac{3}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{6}{9}\right)x=-\frac{3}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-\frac{2}{3}x=-\frac{3}{9}
Whakahekea te hautanga \frac{-6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{2}{3}x=-\frac{1}{3}
Whakahekea te hautanga \frac{-3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
Whakawehea te -\frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{3}. Nā, tāpiria te pūrua o te -\frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{1}{3}+\frac{1}{9}
Pūruatia -\frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{2}{9}
Tāpiri -\frac{1}{3} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{3}\right)^{2}=-\frac{2}{9}
Tauwehea x^{2}-\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{2}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{3}=\frac{\sqrt{2}i}{3} x-\frac{1}{3}=-\frac{\sqrt{2}i}{3}
Whakarūnātia.
x=\frac{1+\sqrt{2}i}{3} x=\frac{-\sqrt{2}i+1}{3}
Me tāpiri \frac{1}{3} ki ngā taha e rua o te whārite.