Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(3x^{2}-2x+5\right)
Tauwehea te 3. Kāore te pūrau 3x^{2}-2x+5 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
9x^{2}-6x+15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 9\times 15}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 9\times 15}}{2\times 9}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-36\times 15}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-6\right)±\sqrt{36-540}}{2\times 9}
Whakareatia -36 ki te 15.
x=\frac{-\left(-6\right)±\sqrt{-504}}{2\times 9}
Tāpiri 36 ki te -540.
9x^{2}-6x+15
Tā te mea e kore te pūrua o tētahi tau tōraro e tautohutia ki te āpure tūturu, kāhore he rongoā. Kāore e taea te pūrau pūrua te whakatauwehe.