Tauwehe
\left(3x-5\right)^{2}
Aromātai
\left(3x-5\right)^{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-30 ab=9\times 25=225
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 9x^{2}+ax+bx+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 225.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
Tātaihia te tapeke mō ia takirua.
a=-15 b=-15
Ko te otinga te takirua ka hoatu i te tapeke -30.
\left(9x^{2}-15x\right)+\left(-15x+25\right)
Tuhia anō te 9x^{2}-30x+25 hei \left(9x^{2}-15x\right)+\left(-15x+25\right).
3x\left(3x-5\right)-5\left(3x-5\right)
Tauwehea te 3x i te tuatahi me te -5 i te rōpū tuarua.
\left(3x-5\right)\left(3x-5\right)
Whakatauwehea atu te kīanga pātahi 3x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3x-5\right)^{2}
Tuhia anōtia hei pūrua huarua.
factor(9x^{2}-30x+25)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(9,-30,25)=1
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
\sqrt{9x^{2}}=3x
Kimihia te pūtakerua o te kīanga tau ārahi, 9x^{2}.
\sqrt{25}=5
Kimihia te pūtakerua o te kīanga tau autō, 25.
\left(3x-5\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
9x^{2}-30x+25=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
Pūrua -30.
x=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
Whakareatia -36 ki te 25.
x=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
Tāpiri 900 ki te -900.
x=\frac{-\left(-30\right)±0}{2\times 9}
Tuhia te pūtakerua o te 0.
x=\frac{30±0}{2\times 9}
Ko te tauaro o -30 ko 30.
x=\frac{30±0}{18}
Whakareatia 2 ki te 9.
9x^{2}-30x+25=9\left(x-\frac{5}{3}\right)\left(x-\frac{5}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{3} mō te x_{1} me te \frac{5}{3} mō te x_{2}.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\left(x-\frac{5}{3}\right)
Tango \frac{5}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-30x+25=9\times \frac{3x-5}{3}\times \frac{3x-5}{3}
Tango \frac{5}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{3\times 3}
Whakareatia \frac{3x-5}{3} ki te \frac{3x-5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-30x+25=9\times \frac{\left(3x-5\right)\left(3x-5\right)}{9}
Whakareatia 3 ki te 3.
9x^{2}-30x+25=\left(3x-5\right)\left(3x-5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}