Whakaoti mō x
x=\frac{\sqrt{11}}{3}+1\approx 2.105541597
x=-\frac{\sqrt{11}}{3}+1\approx -0.105541597
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}-2-18x=0
Tangohia te 18x mai i ngā taha e rua.
9x^{2}-18x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -18 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 9\left(-2\right)}}{2\times 9}
Pūrua -18.
x=\frac{-\left(-18\right)±\sqrt{324-36\left(-2\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-18\right)±\sqrt{324+72}}{2\times 9}
Whakareatia -36 ki te -2.
x=\frac{-\left(-18\right)±\sqrt{396}}{2\times 9}
Tāpiri 324 ki te 72.
x=\frac{-\left(-18\right)±6\sqrt{11}}{2\times 9}
Tuhia te pūtakerua o te 396.
x=\frac{18±6\sqrt{11}}{2\times 9}
Ko te tauaro o -18 ko 18.
x=\frac{18±6\sqrt{11}}{18}
Whakareatia 2 ki te 9.
x=\frac{6\sqrt{11}+18}{18}
Nā, me whakaoti te whārite x=\frac{18±6\sqrt{11}}{18} ina he tāpiri te ±. Tāpiri 18 ki te 6\sqrt{11}.
x=\frac{\sqrt{11}}{3}+1
Whakawehe 18+6\sqrt{11} ki te 18.
x=\frac{18-6\sqrt{11}}{18}
Nā, me whakaoti te whārite x=\frac{18±6\sqrt{11}}{18} ina he tango te ±. Tango 6\sqrt{11} mai i 18.
x=-\frac{\sqrt{11}}{3}+1
Whakawehe 18-6\sqrt{11} ki te 18.
x=\frac{\sqrt{11}}{3}+1 x=-\frac{\sqrt{11}}{3}+1
Kua oti te whārite te whakatau.
9x^{2}-2-18x=0
Tangohia te 18x mai i ngā taha e rua.
9x^{2}-18x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{9x^{2}-18x}{9}=\frac{2}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\left(-\frac{18}{9}\right)x=\frac{2}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}-2x=\frac{2}{9}
Whakawehe -18 ki te 9.
x^{2}-2x+1=\frac{2}{9}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=\frac{11}{9}
Tāpiri \frac{2}{9} ki te 1.
\left(x-1\right)^{2}=\frac{11}{9}
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{11}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=\frac{\sqrt{11}}{3} x-1=-\frac{\sqrt{11}}{3}
Whakarūnātia.
x=\frac{\sqrt{11}}{3}+1 x=-\frac{\sqrt{11}}{3}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}