Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(3x^{2}-5x+2\right)
Tauwehea te 3.
a+b=-5 ab=3\times 2=6
Whakaarohia te 3x^{2}-5x+2. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-6 -2,-3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
-1-6=-7 -2-3=-5
Tātaihia te tapeke mō ia takirua.
a=-3 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(3x^{2}-3x\right)+\left(-2x+2\right)
Tuhia anō te 3x^{2}-5x+2 hei \left(3x^{2}-3x\right)+\left(-2x+2\right).
3x\left(x-1\right)-2\left(x-1\right)
Tauwehea te 3x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-1\right)\left(3x-2\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(x-1\right)\left(3x-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
9x^{2}-15x+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 9\times 6}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 9\times 6}}{2\times 9}
Pūrua -15.
x=\frac{-\left(-15\right)±\sqrt{225-36\times 6}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-\left(-15\right)±\sqrt{225-216}}{2\times 9}
Whakareatia -36 ki te 6.
x=\frac{-\left(-15\right)±\sqrt{9}}{2\times 9}
Tāpiri 225 ki te -216.
x=\frac{-\left(-15\right)±3}{2\times 9}
Tuhia te pūtakerua o te 9.
x=\frac{15±3}{2\times 9}
Ko te tauaro o -15 ko 15.
x=\frac{15±3}{18}
Whakareatia 2 ki te 9.
x=\frac{18}{18}
Nā, me whakaoti te whārite x=\frac{15±3}{18} ina he tāpiri te ±. Tāpiri 15 ki te 3.
x=1
Whakawehe 18 ki te 18.
x=\frac{12}{18}
Nā, me whakaoti te whārite x=\frac{15±3}{18} ina he tango te ±. Tango 3 mai i 15.
x=\frac{2}{3}
Whakahekea te hautanga \frac{12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9x^{2}-15x+6=9\left(x-1\right)\left(x-\frac{2}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te \frac{2}{3} mō te x_{2}.
9x^{2}-15x+6=9\left(x-1\right)\times \frac{3x-2}{3}
Tango \frac{2}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}-15x+6=3\left(x-1\right)\left(3x-2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 9 me te 3.