Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x^{2}-12x+4=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 4}}{2\times 9}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 9 mō te a, te -12 mō te b, me te 4 mō te c i te ture pūrua.
x=\frac{12±0}{18}
Mahia ngā tātaitai.
x=\frac{2}{3}
He ōrite ngā whakatau.
9\left(x-\frac{2}{3}\right)^{2}\leq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x=\frac{2}{3}
E mau ana te koreōrite mō x=\frac{2}{3}.