Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x^{2}+9x=1
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
9x^{2}+9x-1=1-1
Me tango 1 mai i ngā taha e rua o te whārite.
9x^{2}+9x-1=0
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
x=\frac{-9±\sqrt{9^{2}-4\times 9\left(-1\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 9 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 9\left(-1\right)}}{2\times 9}
Pūrua 9.
x=\frac{-9±\sqrt{81-36\left(-1\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-9±\sqrt{81+36}}{2\times 9}
Whakareatia -36 ki te -1.
x=\frac{-9±\sqrt{117}}{2\times 9}
Tāpiri 81 ki te 36.
x=\frac{-9±3\sqrt{13}}{2\times 9}
Tuhia te pūtakerua o te 117.
x=\frac{-9±3\sqrt{13}}{18}
Whakareatia 2 ki te 9.
x=\frac{3\sqrt{13}-9}{18}
Nā, me whakaoti te whārite x=\frac{-9±3\sqrt{13}}{18} ina he tāpiri te ±. Tāpiri -9 ki te 3\sqrt{13}.
x=\frac{\sqrt{13}}{6}-\frac{1}{2}
Whakawehe -9+3\sqrt{13} ki te 18.
x=\frac{-3\sqrt{13}-9}{18}
Nā, me whakaoti te whārite x=\frac{-9±3\sqrt{13}}{18} ina he tango te ±. Tango 3\sqrt{13} mai i -9.
x=-\frac{\sqrt{13}}{6}-\frac{1}{2}
Whakawehe -9-3\sqrt{13} ki te 18.
x=\frac{\sqrt{13}}{6}-\frac{1}{2} x=-\frac{\sqrt{13}}{6}-\frac{1}{2}
Kua oti te whārite te whakatau.
9x^{2}+9x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{9x^{2}+9x}{9}=\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{9}{9}x=\frac{1}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+x=\frac{1}{9}
Whakawehe 9 ki te 9.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\frac{1}{9}+\left(\frac{1}{2}\right)^{2}
Whakawehea te 1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{2}. Nā, tāpiria te pūrua o te \frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+x+\frac{1}{4}=\frac{1}{9}+\frac{1}{4}
Pūruatia \frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+x+\frac{1}{4}=\frac{13}{36}
Tāpiri \frac{1}{9} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{2}\right)^{2}=\frac{13}{36}
Tauwehea x^{2}+x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{13}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{2}=\frac{\sqrt{13}}{6} x+\frac{1}{2}=-\frac{\sqrt{13}}{6}
Whakarūnātia.
x=\frac{\sqrt{13}}{6}-\frac{1}{2} x=-\frac{\sqrt{13}}{6}-\frac{1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.