Whakaoti mō x
x=\frac{1}{3}\approx 0.333333333
x=-\frac{1}{3}\approx -0.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}+7-8=0
Tangohia te 8 mai i ngā taha e rua.
9x^{2}-1=0
Tangohia te 8 i te 7, ka -1.
\left(3x-1\right)\left(3x+1\right)=0
Whakaarohia te 9x^{2}-1. Tuhia anō te 9x^{2}-1 hei \left(3x\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{3} x=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te 3x-1=0 me te 3x+1=0.
9x^{2}=8-7
Tangohia te 7 mai i ngā taha e rua.
9x^{2}=1
Tangohia te 7 i te 8, ka 1.
x^{2}=\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
x=\frac{1}{3} x=-\frac{1}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
9x^{2}+7-8=0
Tangohia te 8 mai i ngā taha e rua.
9x^{2}-1=0
Tangohia te 8 i te 7, ka -1.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-1\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-1\right)}}{2\times 9}
Pūrua 0.
x=\frac{0±\sqrt{-36\left(-1\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{0±\sqrt{36}}{2\times 9}
Whakareatia -36 ki te -1.
x=\frac{0±6}{2\times 9}
Tuhia te pūtakerua o te 36.
x=\frac{0±6}{18}
Whakareatia 2 ki te 9.
x=\frac{1}{3}
Nā, me whakaoti te whārite x=\frac{0±6}{18} ina he tāpiri te ±. Whakahekea te hautanga \frac{6}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{1}{3}
Nā, me whakaoti te whārite x=\frac{0±6}{18} ina he tango te ±. Whakahekea te hautanga \frac{-6}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{1}{3} x=-\frac{1}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}