Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x^{2}+7-8=0
Tangohia te 8 mai i ngā taha e rua.
9x^{2}-1=0
Tangohia te 8 i te 7, ka -1.
\left(3x-1\right)\left(3x+1\right)=0
Whakaarohia te 9x^{2}-1. Tuhia anō te 9x^{2}-1 hei \left(3x\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{3} x=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te 3x-1=0 me te 3x+1=0.
9x^{2}=8-7
Tangohia te 7 mai i ngā taha e rua.
9x^{2}=1
Tangohia te 7 i te 8, ka 1.
x^{2}=\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
x=\frac{1}{3} x=-\frac{1}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
9x^{2}+7-8=0
Tangohia te 8 mai i ngā taha e rua.
9x^{2}-1=0
Tangohia te 8 i te 7, ka -1.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-1\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-1\right)}}{2\times 9}
Pūrua 0.
x=\frac{0±\sqrt{-36\left(-1\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{0±\sqrt{36}}{2\times 9}
Whakareatia -36 ki te -1.
x=\frac{0±6}{2\times 9}
Tuhia te pūtakerua o te 36.
x=\frac{0±6}{18}
Whakareatia 2 ki te 9.
x=\frac{1}{3}
Nā, me whakaoti te whārite x=\frac{0±6}{18} ina he tāpiri te ±. Whakahekea te hautanga \frac{6}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{1}{3}
Nā, me whakaoti te whārite x=\frac{0±6}{18} ina he tango te ±. Whakahekea te hautanga \frac{-6}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{1}{3} x=-\frac{1}{3}
Kua oti te whārite te whakatau.