Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(9x+6\right)=0
Tauwehea te x.
x=0 x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te x=0 me te 9x+6=0.
9x^{2}+6x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±\sqrt{6^{2}}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±6}{2\times 9}
Tuhia te pūtakerua o te 6^{2}.
x=\frac{-6±6}{18}
Whakareatia 2 ki te 9.
x=\frac{0}{18}
Nā, me whakaoti te whārite x=\frac{-6±6}{18} ina he tāpiri te ±. Tāpiri -6 ki te 6.
x=0
Whakawehe 0 ki te 18.
x=-\frac{12}{18}
Nā, me whakaoti te whārite x=\frac{-6±6}{18} ina he tango te ±. Tango 6 mai i -6.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=0 x=-\frac{2}{3}
Kua oti te whārite te whakatau.
9x^{2}+6x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{9x^{2}+6x}{9}=\frac{0}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{6}{9}x=\frac{0}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{2}{3}x=\frac{0}{9}
Whakahekea te hautanga \frac{6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{2}{3}x=0
Whakawehe 0 ki te 9.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{1}{3}\right)^{2}=\frac{1}{9}
Tauwehea x^{2}+\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{3}=\frac{1}{3} x+\frac{1}{3}=-\frac{1}{3}
Whakarūnātia.
x=0 x=-\frac{2}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.