Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9x^{2}+5x+3=20
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
9x^{2}+5x+3-20=20-20
Me tango 20 mai i ngā taha e rua o te whārite.
9x^{2}+5x+3-20=0
Mā te tango i te 20 i a ia ake anō ka toe ko te 0.
9x^{2}+5x-17=0
Tango 20 mai i 3.
x=\frac{-5±\sqrt{5^{2}-4\times 9\left(-17\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 5 mō b, me -17 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 9\left(-17\right)}}{2\times 9}
Pūrua 5.
x=\frac{-5±\sqrt{25-36\left(-17\right)}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-5±\sqrt{25+612}}{2\times 9}
Whakareatia -36 ki te -17.
x=\frac{-5±\sqrt{637}}{2\times 9}
Tāpiri 25 ki te 612.
x=\frac{-5±7\sqrt{13}}{2\times 9}
Tuhia te pūtakerua o te 637.
x=\frac{-5±7\sqrt{13}}{18}
Whakareatia 2 ki te 9.
x=\frac{7\sqrt{13}-5}{18}
Nā, me whakaoti te whārite x=\frac{-5±7\sqrt{13}}{18} ina he tāpiri te ±. Tāpiri -5 ki te 7\sqrt{13}.
x=\frac{-7\sqrt{13}-5}{18}
Nā, me whakaoti te whārite x=\frac{-5±7\sqrt{13}}{18} ina he tango te ±. Tango 7\sqrt{13} mai i -5.
x=\frac{7\sqrt{13}-5}{18} x=\frac{-7\sqrt{13}-5}{18}
Kua oti te whārite te whakatau.
9x^{2}+5x+3=20
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9x^{2}+5x+3-3=20-3
Me tango 3 mai i ngā taha e rua o te whārite.
9x^{2}+5x=20-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
9x^{2}+5x=17
Tango 3 mai i 20.
\frac{9x^{2}+5x}{9}=\frac{17}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{5}{9}x=\frac{17}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=\frac{17}{9}+\left(\frac{5}{18}\right)^{2}
Whakawehea te \frac{5}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{18}. Nā, tāpiria te pūrua o te \frac{5}{18} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{17}{9}+\frac{25}{324}
Pūruatia \frac{5}{18} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{637}{324}
Tāpiri \frac{17}{9} ki te \frac{25}{324} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{18}\right)^{2}=\frac{637}{324}
Tauwehea x^{2}+\frac{5}{9}x+\frac{25}{324}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{\frac{637}{324}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{18}=\frac{7\sqrt{13}}{18} x+\frac{5}{18}=-\frac{7\sqrt{13}}{18}
Whakarūnātia.
x=\frac{7\sqrt{13}-5}{18} x=\frac{-7\sqrt{13}-5}{18}
Me tango \frac{5}{18} mai i ngā taha e rua o te whārite.