Tauwehe
3\left(x+2\right)\left(3x+7\right)
Aromātai
3\left(x+2\right)\left(3x+7\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(3x^{2}+13x+14\right)
Tauwehea te 3.
a+b=13 ab=3\times 14=42
Whakaarohia te 3x^{2}+13x+14. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 3x^{2}+ax+bx+14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,42 2,21 3,14 6,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 42.
1+42=43 2+21=23 3+14=17 6+7=13
Tātaihia te tapeke mō ia takirua.
a=6 b=7
Ko te otinga te takirua ka hoatu i te tapeke 13.
\left(3x^{2}+6x\right)+\left(7x+14\right)
Tuhia anō te 3x^{2}+13x+14 hei \left(3x^{2}+6x\right)+\left(7x+14\right).
3x\left(x+2\right)+7\left(x+2\right)
Tauwehea te 3x i te tuatahi me te 7 i te rōpū tuarua.
\left(x+2\right)\left(3x+7\right)
Whakatauwehea atu te kīanga pātahi x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(x+2\right)\left(3x+7\right)
Me tuhi anō te kīanga whakatauwehe katoa.
9x^{2}+39x+42=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-39±\sqrt{39^{2}-4\times 9\times 42}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-39±\sqrt{1521-4\times 9\times 42}}{2\times 9}
Pūrua 39.
x=\frac{-39±\sqrt{1521-36\times 42}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-39±\sqrt{1521-1512}}{2\times 9}
Whakareatia -36 ki te 42.
x=\frac{-39±\sqrt{9}}{2\times 9}
Tāpiri 1521 ki te -1512.
x=\frac{-39±3}{2\times 9}
Tuhia te pūtakerua o te 9.
x=\frac{-39±3}{18}
Whakareatia 2 ki te 9.
x=-\frac{36}{18}
Nā, me whakaoti te whārite x=\frac{-39±3}{18} ina he tāpiri te ±. Tāpiri -39 ki te 3.
x=-2
Whakawehe -36 ki te 18.
x=-\frac{42}{18}
Nā, me whakaoti te whārite x=\frac{-39±3}{18} ina he tango te ±. Tango 3 mai i -39.
x=-\frac{7}{3}
Whakahekea te hautanga \frac{-42}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9x^{2}+39x+42=9\left(x-\left(-2\right)\right)\left(x-\left(-\frac{7}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2 mō te x_{1} me te -\frac{7}{3} mō te x_{2}.
9x^{2}+39x+42=9\left(x+2\right)\left(x+\frac{7}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
9x^{2}+39x+42=9\left(x+2\right)\times \frac{3x+7}{3}
Tāpiri \frac{7}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9x^{2}+39x+42=3\left(x+2\right)\left(3x+7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 9 me te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}