Whakaoti mō x (complex solution)
x=\frac{-1+\sqrt{35}i}{6}\approx -0.166666667+0.986013297i
x=\frac{-\sqrt{35}i-1}{6}\approx -0.166666667-0.986013297i
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}+3x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-3±\sqrt{3^{2}-4\times 9\times 9}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 3 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\times 9\times 9}}{2\times 9}
Pūrua 3.
x=\frac{-3±\sqrt{9-36\times 9}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-3±\sqrt{9-324}}{2\times 9}
Whakareatia -36 ki te 9.
x=\frac{-3±\sqrt{-315}}{2\times 9}
Tāpiri 9 ki te -324.
x=\frac{-3±3\sqrt{35}i}{2\times 9}
Tuhia te pūtakerua o te -315.
x=\frac{-3±3\sqrt{35}i}{18}
Whakareatia 2 ki te 9.
x=\frac{-3+3\sqrt{35}i}{18}
Nā, me whakaoti te whārite x=\frac{-3±3\sqrt{35}i}{18} ina he tāpiri te ±. Tāpiri -3 ki te 3i\sqrt{35}.
x=\frac{-1+\sqrt{35}i}{6}
Whakawehe -3+3i\sqrt{35} ki te 18.
x=\frac{-3\sqrt{35}i-3}{18}
Nā, me whakaoti te whārite x=\frac{-3±3\sqrt{35}i}{18} ina he tango te ±. Tango 3i\sqrt{35} mai i -3.
x=\frac{-\sqrt{35}i-1}{6}
Whakawehe -3-3i\sqrt{35} ki te 18.
x=\frac{-1+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i-1}{6}
Kua oti te whārite te whakatau.
9x^{2}+3x+9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9x^{2}+3x+9-9=-9
Me tango 9 mai i ngā taha e rua o te whārite.
9x^{2}+3x=-9
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
\frac{9x^{2}+3x}{9}=-\frac{9}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{3}{9}x=-\frac{9}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{1}{3}x=-\frac{9}{9}
Whakahekea te hautanga \frac{3}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{1}{3}x=-1
Whakawehe -9 ki te 9.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-1+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-1+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{35}{36}
Tāpiri -1 ki te \frac{1}{36}.
\left(x+\frac{1}{6}\right)^{2}=-\frac{35}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{35}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{\sqrt{35}i}{6} x+\frac{1}{6}=-\frac{\sqrt{35}i}{6}
Whakarūnātia.
x=\frac{-1+\sqrt{35}i}{6} x=\frac{-\sqrt{35}i-1}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}