Whakaoti mō x
x=\frac{\sqrt{3}}{3}-1\approx -0.422649731
x=-\frac{\sqrt{3}}{3}-1\approx -1.577350269
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}+18x+9=3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
9x^{2}+18x+9-3=3-3
Me tango 3 mai i ngā taha e rua o te whārite.
9x^{2}+18x+9-3=0
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
9x^{2}+18x+6=0
Tango 3 mai i 9.
x=\frac{-18±\sqrt{18^{2}-4\times 9\times 6}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 18 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 9\times 6}}{2\times 9}
Pūrua 18.
x=\frac{-18±\sqrt{324-36\times 6}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-18±\sqrt{324-216}}{2\times 9}
Whakareatia -36 ki te 6.
x=\frac{-18±\sqrt{108}}{2\times 9}
Tāpiri 324 ki te -216.
x=\frac{-18±6\sqrt{3}}{2\times 9}
Tuhia te pūtakerua o te 108.
x=\frac{-18±6\sqrt{3}}{18}
Whakareatia 2 ki te 9.
x=\frac{6\sqrt{3}-18}{18}
Nā, me whakaoti te whārite x=\frac{-18±6\sqrt{3}}{18} ina he tāpiri te ±. Tāpiri -18 ki te 6\sqrt{3}.
x=\frac{\sqrt{3}}{3}-1
Whakawehe -18+6\sqrt{3} ki te 18.
x=\frac{-6\sqrt{3}-18}{18}
Nā, me whakaoti te whārite x=\frac{-18±6\sqrt{3}}{18} ina he tango te ±. Tango 6\sqrt{3} mai i -18.
x=-\frac{\sqrt{3}}{3}-1
Whakawehe -18-6\sqrt{3} ki te 18.
x=\frac{\sqrt{3}}{3}-1 x=-\frac{\sqrt{3}}{3}-1
Kua oti te whārite te whakatau.
9x^{2}+18x+9=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9x^{2}+18x+9-9=3-9
Me tango 9 mai i ngā taha e rua o te whārite.
9x^{2}+18x=3-9
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
9x^{2}+18x=-6
Tango 9 mai i 3.
\frac{9x^{2}+18x}{9}=-\frac{6}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{18}{9}x=-\frac{6}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+2x=-\frac{6}{9}
Whakawehe 18 ki te 9.
x^{2}+2x=-\frac{2}{3}
Whakahekea te hautanga \frac{-6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+2x+1^{2}=-\frac{2}{3}+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=-\frac{2}{3}+1
Pūrua 1.
x^{2}+2x+1=\frac{1}{3}
Tāpiri -\frac{2}{3} ki te 1.
\left(x+1\right)^{2}=\frac{1}{3}
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{1}{3}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=\frac{\sqrt{3}}{3} x+1=-\frac{\sqrt{3}}{3}
Whakarūnātia.
x=\frac{\sqrt{3}}{3}-1 x=-\frac{\sqrt{3}}{3}-1
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}