Whakaoti mō x
x=-\frac{2}{3}\approx -0.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
9x^{2}+14x+8-2x=4
Tangohia te 2x mai i ngā taha e rua.
9x^{2}+12x+8=4
Pahekotia te 14x me -2x, ka 12x.
9x^{2}+12x+8-4=0
Tangohia te 4 mai i ngā taha e rua.
9x^{2}+12x+4=0
Tangohia te 4 i te 8, ka 4.
a+b=12 ab=9\times 4=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,36 2,18 3,12 4,9 6,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Tātaihia te tapeke mō ia takirua.
a=6 b=6
Ko te otinga te takirua ka hoatu i te tapeke 12.
\left(9x^{2}+6x\right)+\left(6x+4\right)
Tuhia anō te 9x^{2}+12x+4 hei \left(9x^{2}+6x\right)+\left(6x+4\right).
3x\left(3x+2\right)+2\left(3x+2\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(3x+2\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi 3x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3x+2\right)^{2}
Tuhia anōtia hei pūrua huarua.
x=-\frac{2}{3}
Hei kimi i te otinga whārite, whakaotia te 3x+2=0.
9x^{2}+14x+8-2x=4
Tangohia te 2x mai i ngā taha e rua.
9x^{2}+12x+8=4
Pahekotia te 14x me -2x, ka 12x.
9x^{2}+12x+8-4=0
Tangohia te 4 mai i ngā taha e rua.
9x^{2}+12x+4=0
Tangohia te 4 i te 8, ka 4.
x=\frac{-12±\sqrt{12^{2}-4\times 9\times 4}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 12 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 9\times 4}}{2\times 9}
Pūrua 12.
x=\frac{-12±\sqrt{144-36\times 4}}{2\times 9}
Whakareatia -4 ki te 9.
x=\frac{-12±\sqrt{144-144}}{2\times 9}
Whakareatia -36 ki te 4.
x=\frac{-12±\sqrt{0}}{2\times 9}
Tāpiri 144 ki te -144.
x=-\frac{12}{2\times 9}
Tuhia te pūtakerua o te 0.
x=-\frac{12}{18}
Whakareatia 2 ki te 9.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9x^{2}+14x+8-2x=4
Tangohia te 2x mai i ngā taha e rua.
9x^{2}+12x+8=4
Pahekotia te 14x me -2x, ka 12x.
9x^{2}+12x=4-8
Tangohia te 8 mai i ngā taha e rua.
9x^{2}+12x=-4
Tangohia te 8 i te 4, ka -4.
\frac{9x^{2}+12x}{9}=-\frac{4}{9}
Whakawehea ngā taha e rua ki te 9.
x^{2}+\frac{12}{9}x=-\frac{4}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
x^{2}+\frac{4}{3}x=-\frac{4}{9}
Whakahekea te hautanga \frac{12}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{4}{3}x+\left(\frac{2}{3}\right)^{2}=-\frac{4}{9}+\left(\frac{2}{3}\right)^{2}
Whakawehea te \frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{2}{3}. Nā, tāpiria te pūrua o te \frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{4}{3}x+\frac{4}{9}=\frac{-4+4}{9}
Pūruatia \frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{4}{3}x+\frac{4}{9}=0
Tāpiri -\frac{4}{9} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{2}{3}\right)^{2}=0
Tauwehea x^{2}+\frac{4}{3}x+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{3}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{2}{3}=0 x+\frac{2}{3}=0
Whakarūnātia.
x=-\frac{2}{3} x=-\frac{2}{3}
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.
x=-\frac{2}{3}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}