Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=9 ab=9\left(-4\right)=-36
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 9w^{2}+aw+bw-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,36 -2,18 -3,12 -4,9 -6,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Tātaihia te tapeke mō ia takirua.
a=-3 b=12
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(9w^{2}-3w\right)+\left(12w-4\right)
Tuhia anō te 9w^{2}+9w-4 hei \left(9w^{2}-3w\right)+\left(12w-4\right).
3w\left(3w-1\right)+4\left(3w-1\right)
Tauwehea te 3w i te tuatahi me te 4 i te rōpū tuarua.
\left(3w-1\right)\left(3w+4\right)
Whakatauwehea atu te kīanga pātahi 3w-1 mā te whakamahi i te āhuatanga tātai tohatoha.
9w^{2}+9w-4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-9±\sqrt{9^{2}-4\times 9\left(-4\right)}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-9±\sqrt{81-4\times 9\left(-4\right)}}{2\times 9}
Pūrua 9.
w=\frac{-9±\sqrt{81-36\left(-4\right)}}{2\times 9}
Whakareatia -4 ki te 9.
w=\frac{-9±\sqrt{81+144}}{2\times 9}
Whakareatia -36 ki te -4.
w=\frac{-9±\sqrt{225}}{2\times 9}
Tāpiri 81 ki te 144.
w=\frac{-9±15}{2\times 9}
Tuhia te pūtakerua o te 225.
w=\frac{-9±15}{18}
Whakareatia 2 ki te 9.
w=\frac{6}{18}
Nā, me whakaoti te whārite w=\frac{-9±15}{18} ina he tāpiri te ±. Tāpiri -9 ki te 15.
w=\frac{1}{3}
Whakahekea te hautanga \frac{6}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
w=-\frac{24}{18}
Nā, me whakaoti te whārite w=\frac{-9±15}{18} ina he tango te ±. Tango 15 mai i -9.
w=-\frac{4}{3}
Whakahekea te hautanga \frac{-24}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9w^{2}+9w-4=9\left(w-\frac{1}{3}\right)\left(w-\left(-\frac{4}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{3} mō te x_{1} me te -\frac{4}{3} mō te x_{2}.
9w^{2}+9w-4=9\left(w-\frac{1}{3}\right)\left(w+\frac{4}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
9w^{2}+9w-4=9\times \frac{3w-1}{3}\left(w+\frac{4}{3}\right)
Tango \frac{1}{3} mai i w mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9w^{2}+9w-4=9\times \frac{3w-1}{3}\times \frac{3w+4}{3}
Tāpiri \frac{4}{3} ki te w mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9w^{2}+9w-4=9\times \frac{\left(3w-1\right)\left(3w+4\right)}{3\times 3}
Whakareatia \frac{3w-1}{3} ki te \frac{3w+4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9w^{2}+9w-4=9\times \frac{\left(3w-1\right)\left(3w+4\right)}{9}
Whakareatia 3 ki te 3.
9w^{2}+9w-4=\left(3w-1\right)\left(3w+4\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.