Whakaoti mō w
w = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Tohaina
Kua tāruatia ki te papatopenga
9w^{2}+25-30w=0
Tangohia te 30w mai i ngā taha e rua.
9w^{2}-30w+25=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-30 ab=9\times 25=225
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9w^{2}+aw+bw+25. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 225.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
Tātaihia te tapeke mō ia takirua.
a=-15 b=-15
Ko te otinga te takirua ka hoatu i te tapeke -30.
\left(9w^{2}-15w\right)+\left(-15w+25\right)
Tuhia anō te 9w^{2}-30w+25 hei \left(9w^{2}-15w\right)+\left(-15w+25\right).
3w\left(3w-5\right)-5\left(3w-5\right)
Tauwehea te 3w i te tuatahi me te -5 i te rōpū tuarua.
\left(3w-5\right)\left(3w-5\right)
Whakatauwehea atu te kīanga pātahi 3w-5 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3w-5\right)^{2}
Tuhia anōtia hei pūrua huarua.
w=\frac{5}{3}
Hei kimi i te otinga whārite, whakaotia te 3w-5=0.
9w^{2}+25-30w=0
Tangohia te 30w mai i ngā taha e rua.
9w^{2}-30w+25=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 9\times 25}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -30 mō b, me 25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-30\right)±\sqrt{900-4\times 9\times 25}}{2\times 9}
Pūrua -30.
w=\frac{-\left(-30\right)±\sqrt{900-36\times 25}}{2\times 9}
Whakareatia -4 ki te 9.
w=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 9}
Whakareatia -36 ki te 25.
w=\frac{-\left(-30\right)±\sqrt{0}}{2\times 9}
Tāpiri 900 ki te -900.
w=-\frac{-30}{2\times 9}
Tuhia te pūtakerua o te 0.
w=\frac{30}{2\times 9}
Ko te tauaro o -30 ko 30.
w=\frac{30}{18}
Whakareatia 2 ki te 9.
w=\frac{5}{3}
Whakahekea te hautanga \frac{30}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9w^{2}+25-30w=0
Tangohia te 30w mai i ngā taha e rua.
9w^{2}-30w=-25
Tangohia te 25 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{9w^{2}-30w}{9}=-\frac{25}{9}
Whakawehea ngā taha e rua ki te 9.
w^{2}+\left(-\frac{30}{9}\right)w=-\frac{25}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
w^{2}-\frac{10}{3}w=-\frac{25}{9}
Whakahekea te hautanga \frac{-30}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
w^{2}-\frac{10}{3}w+\left(-\frac{5}{3}\right)^{2}=-\frac{25}{9}+\left(-\frac{5}{3}\right)^{2}
Whakawehea te -\frac{10}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{3}. Nā, tāpiria te pūrua o te -\frac{5}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
w^{2}-\frac{10}{3}w+\frac{25}{9}=\frac{-25+25}{9}
Pūruatia -\frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
w^{2}-\frac{10}{3}w+\frac{25}{9}=0
Tāpiri -\frac{25}{9} ki te \frac{25}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(w-\frac{5}{3}\right)^{2}=0
Tauwehea w^{2}-\frac{10}{3}w+\frac{25}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{5}{3}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
w-\frac{5}{3}=0 w-\frac{5}{3}=0
Whakarūnātia.
w=\frac{5}{3} w=\frac{5}{3}
Me tāpiri \frac{5}{3} ki ngā taha e rua o te whārite.
w=\frac{5}{3}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}