Whakaoti mō t
t=-\frac{1}{2}=-0.5
Tohaina
Kua tāruatia ki te papatopenga
9t-\frac{3}{4}\times 5t-\frac{3}{4}\left(-1\right)=5t+\frac{5}{8}
Whakamahia te āhuatanga tohatoha hei whakarea te -\frac{3}{4} ki te 5t-1.
9t+\frac{-3\times 5}{4}t-\frac{3}{4}\left(-1\right)=5t+\frac{5}{8}
Tuhia te -\frac{3}{4}\times 5 hei hautanga kotahi.
9t+\frac{-15}{4}t-\frac{3}{4}\left(-1\right)=5t+\frac{5}{8}
Whakareatia te -3 ki te 5, ka -15.
9t-\frac{15}{4}t-\frac{3}{4}\left(-1\right)=5t+\frac{5}{8}
Ka taea te hautanga \frac{-15}{4} te tuhi anō ko -\frac{15}{4} mā te tango i te tohu tōraro.
9t-\frac{15}{4}t+\frac{3}{4}=5t+\frac{5}{8}
Whakareatia te -\frac{3}{4} ki te -1, ka \frac{3}{4}.
\frac{21}{4}t+\frac{3}{4}=5t+\frac{5}{8}
Pahekotia te 9t me -\frac{15}{4}t, ka \frac{21}{4}t.
\frac{21}{4}t+\frac{3}{4}-5t=\frac{5}{8}
Tangohia te 5t mai i ngā taha e rua.
\frac{1}{4}t+\frac{3}{4}=\frac{5}{8}
Pahekotia te \frac{21}{4}t me -5t, ka \frac{1}{4}t.
\frac{1}{4}t=\frac{5}{8}-\frac{3}{4}
Tangohia te \frac{3}{4} mai i ngā taha e rua.
\frac{1}{4}t=\frac{5}{8}-\frac{6}{8}
Ko te maha noa iti rawa atu o 8 me 4 ko 8. Me tahuri \frac{5}{8} me \frac{3}{4} ki te hautau me te tautūnga 8.
\frac{1}{4}t=\frac{5-6}{8}
Tā te mea he rite te tauraro o \frac{5}{8} me \frac{6}{8}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{4}t=-\frac{1}{8}
Tangohia te 6 i te 5, ka -1.
t=-\frac{1}{8}\times 4
Me whakarea ngā taha e rua ki te 4, te tau utu o \frac{1}{4}.
t=\frac{-4}{8}
Tuhia te -\frac{1}{8}\times 4 hei hautanga kotahi.
t=-\frac{1}{2}
Whakahekea te hautanga \frac{-4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}