Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9t^{2}-12t+4=0
Me tāpiri te 4 ki ngā taha e rua.
a+b=-12 ab=9\times 4=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9t^{2}+at+bt+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-6 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -12.
\left(9t^{2}-6t\right)+\left(-6t+4\right)
Tuhia anō te 9t^{2}-12t+4 hei \left(9t^{2}-6t\right)+\left(-6t+4\right).
3t\left(3t-2\right)-2\left(3t-2\right)
Tauwehea te 3t i te tuatahi me te -2 i te rōpū tuarua.
\left(3t-2\right)\left(3t-2\right)
Whakatauwehea atu te kīanga pātahi 3t-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3t-2\right)^{2}
Tuhia anōtia hei pūrua huarua.
t=\frac{2}{3}
Hei kimi i te otinga whārite, whakaotia te 3t-2=0.
9t^{2}-12t=-4
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
9t^{2}-12t-\left(-4\right)=-4-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
9t^{2}-12t-\left(-4\right)=0
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
9t^{2}-12t+4=0
Tango -4 mai i 0.
t=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9\times 4}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -12 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-12\right)±\sqrt{144-4\times 9\times 4}}{2\times 9}
Pūrua -12.
t=\frac{-\left(-12\right)±\sqrt{144-36\times 4}}{2\times 9}
Whakareatia -4 ki te 9.
t=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 9}
Whakareatia -36 ki te 4.
t=\frac{-\left(-12\right)±\sqrt{0}}{2\times 9}
Tāpiri 144 ki te -144.
t=-\frac{-12}{2\times 9}
Tuhia te pūtakerua o te 0.
t=\frac{12}{2\times 9}
Ko te tauaro o -12 ko 12.
t=\frac{12}{18}
Whakareatia 2 ki te 9.
t=\frac{2}{3}
Whakahekea te hautanga \frac{12}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9t^{2}-12t=-4
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{9t^{2}-12t}{9}=-\frac{4}{9}
Whakawehea ngā taha e rua ki te 9.
t^{2}+\left(-\frac{12}{9}\right)t=-\frac{4}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
t^{2}-\frac{4}{3}t=-\frac{4}{9}
Whakahekea te hautanga \frac{-12}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
t^{2}-\frac{4}{3}t+\left(-\frac{2}{3}\right)^{2}=-\frac{4}{9}+\left(-\frac{2}{3}\right)^{2}
Whakawehea te -\frac{4}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{3}. Nā, tāpiria te pūrua o te -\frac{2}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-\frac{4}{3}t+\frac{4}{9}=\frac{-4+4}{9}
Pūruatia -\frac{2}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}-\frac{4}{3}t+\frac{4}{9}=0
Tāpiri -\frac{4}{9} ki te \frac{4}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t-\frac{2}{3}\right)^{2}=0
Tauwehea t^{2}-\frac{4}{3}t+\frac{4}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{2}{3}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-\frac{2}{3}=0 t-\frac{2}{3}=0
Whakarūnātia.
t=\frac{2}{3} t=\frac{2}{3}
Me tāpiri \frac{2}{3} ki ngā taha e rua o te whārite.
t=\frac{2}{3}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.