Tīpoka ki ngā ihirangi matua
Whakaoti mō s
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

s^{2}-81=0
Whakawehea ngā taha e rua ki te 9.
\left(s-9\right)\left(s+9\right)=0
Whakaarohia te s^{2}-81. Tuhia anō te s^{2}-81 hei s^{2}-9^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
s=9 s=-9
Hei kimi otinga whārite, me whakaoti te s-9=0 me te s+9=0.
9s^{2}=729
Me tāpiri te 729 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
s^{2}=\frac{729}{9}
Whakawehea ngā taha e rua ki te 9.
s^{2}=81
Whakawehea te 729 ki te 9, kia riro ko 81.
s=9 s=-9
Tuhia te pūtakerua o ngā taha e rua o te whārite.
9s^{2}-729=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
s=\frac{0±\sqrt{0^{2}-4\times 9\left(-729\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -729 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 9\left(-729\right)}}{2\times 9}
Pūrua 0.
s=\frac{0±\sqrt{-36\left(-729\right)}}{2\times 9}
Whakareatia -4 ki te 9.
s=\frac{0±\sqrt{26244}}{2\times 9}
Whakareatia -36 ki te -729.
s=\frac{0±162}{2\times 9}
Tuhia te pūtakerua o te 26244.
s=\frac{0±162}{18}
Whakareatia 2 ki te 9.
s=9
Nā, me whakaoti te whārite s=\frac{0±162}{18} ina he tāpiri te ±. Whakawehe 162 ki te 18.
s=-9
Nā, me whakaoti te whārite s=\frac{0±162}{18} ina he tango te ±. Whakawehe -162 ki te 18.
s=9 s=-9
Kua oti te whārite te whakatau.