Whakaoti mō s
s=9
s=-9
Tohaina
Kua tāruatia ki te papatopenga
s^{2}-81=0
Whakawehea ngā taha e rua ki te 9.
\left(s-9\right)\left(s+9\right)=0
Whakaarohia te s^{2}-81. Tuhia anō te s^{2}-81 hei s^{2}-9^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
s=9 s=-9
Hei kimi otinga whārite, me whakaoti te s-9=0 me te s+9=0.
9s^{2}=729
Me tāpiri te 729 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
s^{2}=\frac{729}{9}
Whakawehea ngā taha e rua ki te 9.
s^{2}=81
Whakawehea te 729 ki te 9, kia riro ko 81.
s=9 s=-9
Tuhia te pūtakerua o ngā taha e rua o te whārite.
9s^{2}-729=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
s=\frac{0±\sqrt{0^{2}-4\times 9\left(-729\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -729 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 9\left(-729\right)}}{2\times 9}
Pūrua 0.
s=\frac{0±\sqrt{-36\left(-729\right)}}{2\times 9}
Whakareatia -4 ki te 9.
s=\frac{0±\sqrt{26244}}{2\times 9}
Whakareatia -36 ki te -729.
s=\frac{0±162}{2\times 9}
Tuhia te pūtakerua o te 26244.
s=\frac{0±162}{18}
Whakareatia 2 ki te 9.
s=9
Nā, me whakaoti te whārite s=\frac{0±162}{18} ina he tāpiri te ±. Whakawehe 162 ki te 18.
s=-9
Nā, me whakaoti te whārite s=\frac{0±162}{18} ina he tango te ±. Whakawehe -162 ki te 18.
s=9 s=-9
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}