Whakaoti mō q
q=\frac{\sqrt{13}+7}{18}\approx 0.589197293
q=\frac{7-\sqrt{13}}{18}\approx 0.188580485
Tohaina
Kua tāruatia ki te papatopenga
9q^{2}-7q+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 9}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -7 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-7\right)±\sqrt{49-4\times 9}}{2\times 9}
Pūrua -7.
q=\frac{-\left(-7\right)±\sqrt{49-36}}{2\times 9}
Whakareatia -4 ki te 9.
q=\frac{-\left(-7\right)±\sqrt{13}}{2\times 9}
Tāpiri 49 ki te -36.
q=\frac{7±\sqrt{13}}{2\times 9}
Ko te tauaro o -7 ko 7.
q=\frac{7±\sqrt{13}}{18}
Whakareatia 2 ki te 9.
q=\frac{\sqrt{13}+7}{18}
Nā, me whakaoti te whārite q=\frac{7±\sqrt{13}}{18} ina he tāpiri te ±. Tāpiri 7 ki te \sqrt{13}.
q=\frac{7-\sqrt{13}}{18}
Nā, me whakaoti te whārite q=\frac{7±\sqrt{13}}{18} ina he tango te ±. Tango \sqrt{13} mai i 7.
q=\frac{\sqrt{13}+7}{18} q=\frac{7-\sqrt{13}}{18}
Kua oti te whārite te whakatau.
9q^{2}-7q+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9q^{2}-7q+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
9q^{2}-7q=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{9q^{2}-7q}{9}=-\frac{1}{9}
Whakawehea ngā taha e rua ki te 9.
q^{2}-\frac{7}{9}q=-\frac{1}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
q^{2}-\frac{7}{9}q+\left(-\frac{7}{18}\right)^{2}=-\frac{1}{9}+\left(-\frac{7}{18}\right)^{2}
Whakawehea te -\frac{7}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{18}. Nā, tāpiria te pūrua o te -\frac{7}{18} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}-\frac{7}{9}q+\frac{49}{324}=-\frac{1}{9}+\frac{49}{324}
Pūruatia -\frac{7}{18} mā te pūrua i te taurunga me te tauraro o te hautanga.
q^{2}-\frac{7}{9}q+\frac{49}{324}=\frac{13}{324}
Tāpiri -\frac{1}{9} ki te \frac{49}{324} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(q-\frac{7}{18}\right)^{2}=\frac{13}{324}
Tauwehea q^{2}-\frac{7}{9}q+\frac{49}{324}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-\frac{7}{18}\right)^{2}}=\sqrt{\frac{13}{324}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q-\frac{7}{18}=\frac{\sqrt{13}}{18} q-\frac{7}{18}=-\frac{\sqrt{13}}{18}
Whakarūnātia.
q=\frac{\sqrt{13}+7}{18} q=\frac{7-\sqrt{13}}{18}
Me tāpiri \frac{7}{18} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}