Tīpoka ki ngā ihirangi matua
Whakaoti mō q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-20 ab=9\times 4=36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9q^{2}+aq+bq+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-18 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -20.
\left(9q^{2}-18q\right)+\left(-2q+4\right)
Tuhia anō te 9q^{2}-20q+4 hei \left(9q^{2}-18q\right)+\left(-2q+4\right).
9q\left(q-2\right)-2\left(q-2\right)
Tauwehea te 9q i te tuatahi me te -2 i te rōpū tuarua.
\left(q-2\right)\left(9q-2\right)
Whakatauwehea atu te kīanga pātahi q-2 mā te whakamahi i te āhuatanga tātai tohatoha.
q=2 q=\frac{2}{9}
Hei kimi otinga whārite, me whakaoti te q-2=0 me te 9q-2=0.
9q^{2}-20q+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
q=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 9\times 4}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -20 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-20\right)±\sqrt{400-4\times 9\times 4}}{2\times 9}
Pūrua -20.
q=\frac{-\left(-20\right)±\sqrt{400-36\times 4}}{2\times 9}
Whakareatia -4 ki te 9.
q=\frac{-\left(-20\right)±\sqrt{400-144}}{2\times 9}
Whakareatia -36 ki te 4.
q=\frac{-\left(-20\right)±\sqrt{256}}{2\times 9}
Tāpiri 400 ki te -144.
q=\frac{-\left(-20\right)±16}{2\times 9}
Tuhia te pūtakerua o te 256.
q=\frac{20±16}{2\times 9}
Ko te tauaro o -20 ko 20.
q=\frac{20±16}{18}
Whakareatia 2 ki te 9.
q=\frac{36}{18}
Nā, me whakaoti te whārite q=\frac{20±16}{18} ina he tāpiri te ±. Tāpiri 20 ki te 16.
q=2
Whakawehe 36 ki te 18.
q=\frac{4}{18}
Nā, me whakaoti te whārite q=\frac{20±16}{18} ina he tango te ±. Tango 16 mai i 20.
q=\frac{2}{9}
Whakahekea te hautanga \frac{4}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
q=2 q=\frac{2}{9}
Kua oti te whārite te whakatau.
9q^{2}-20q+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9q^{2}-20q+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
9q^{2}-20q=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{9q^{2}-20q}{9}=-\frac{4}{9}
Whakawehea ngā taha e rua ki te 9.
q^{2}-\frac{20}{9}q=-\frac{4}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
q^{2}-\frac{20}{9}q+\left(-\frac{10}{9}\right)^{2}=-\frac{4}{9}+\left(-\frac{10}{9}\right)^{2}
Whakawehea te -\frac{20}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{10}{9}. Nā, tāpiria te pūrua o te -\frac{10}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
q^{2}-\frac{20}{9}q+\frac{100}{81}=-\frac{4}{9}+\frac{100}{81}
Pūruatia -\frac{10}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
q^{2}-\frac{20}{9}q+\frac{100}{81}=\frac{64}{81}
Tāpiri -\frac{4}{9} ki te \frac{100}{81} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(q-\frac{10}{9}\right)^{2}=\frac{64}{81}
Tauwehea q^{2}-\frac{20}{9}q+\frac{100}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-\frac{10}{9}\right)^{2}}=\sqrt{\frac{64}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
q-\frac{10}{9}=\frac{8}{9} q-\frac{10}{9}=-\frac{8}{9}
Whakarūnātia.
q=2 q=\frac{2}{9}
Me tāpiri \frac{10}{9} ki ngā taha e rua o te whārite.