Tauwehe
\left(p-1\right)\left(9p+1\right)
Aromātai
\left(p-1\right)\left(9p+1\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-8 ab=9\left(-1\right)=-9
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 9p^{2}+ap+bp-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-9 3,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -9.
1-9=-8 3-3=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=1
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(9p^{2}-9p\right)+\left(p-1\right)
Tuhia anō te 9p^{2}-8p-1 hei \left(9p^{2}-9p\right)+\left(p-1\right).
9p\left(p-1\right)+p-1
Whakatauwehea atu 9p i te 9p^{2}-9p.
\left(p-1\right)\left(9p+1\right)
Whakatauwehea atu te kīanga pātahi p-1 mā te whakamahi i te āhuatanga tātai tohatoha.
9p^{2}-8p-1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
p=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 9\left(-1\right)}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-\left(-8\right)±\sqrt{64-4\times 9\left(-1\right)}}{2\times 9}
Pūrua -8.
p=\frac{-\left(-8\right)±\sqrt{64-36\left(-1\right)}}{2\times 9}
Whakareatia -4 ki te 9.
p=\frac{-\left(-8\right)±\sqrt{64+36}}{2\times 9}
Whakareatia -36 ki te -1.
p=\frac{-\left(-8\right)±\sqrt{100}}{2\times 9}
Tāpiri 64 ki te 36.
p=\frac{-\left(-8\right)±10}{2\times 9}
Tuhia te pūtakerua o te 100.
p=\frac{8±10}{2\times 9}
Ko te tauaro o -8 ko 8.
p=\frac{8±10}{18}
Whakareatia 2 ki te 9.
p=\frac{18}{18}
Nā, me whakaoti te whārite p=\frac{8±10}{18} ina he tāpiri te ±. Tāpiri 8 ki te 10.
p=1
Whakawehe 18 ki te 18.
p=-\frac{2}{18}
Nā, me whakaoti te whārite p=\frac{8±10}{18} ina he tango te ±. Tango 10 mai i 8.
p=-\frac{1}{9}
Whakahekea te hautanga \frac{-2}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
9p^{2}-8p-1=9\left(p-1\right)\left(p-\left(-\frac{1}{9}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te -\frac{1}{9} mō te x_{2}.
9p^{2}-8p-1=9\left(p-1\right)\left(p+\frac{1}{9}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
9p^{2}-8p-1=9\left(p-1\right)\times \frac{9p+1}{9}
Tāpiri \frac{1}{9} ki te p mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9p^{2}-8p-1=\left(p-1\right)\left(9p+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}