Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

p^{2}=\frac{49}{9}
Whakawehea ngā taha e rua ki te 9.
p^{2}-\frac{49}{9}=0
Tangohia te \frac{49}{9} mai i ngā taha e rua.
9p^{2}-49=0
Me whakarea ngā taha e rua ki te 9.
\left(3p-7\right)\left(3p+7\right)=0
Whakaarohia te 9p^{2}-49. Tuhia anō te 9p^{2}-49 hei \left(3p\right)^{2}-7^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
p=\frac{7}{3} p=-\frac{7}{3}
Hei kimi otinga whārite, me whakaoti te 3p-7=0 me te 3p+7=0.
p^{2}=\frac{49}{9}
Whakawehea ngā taha e rua ki te 9.
p=\frac{7}{3} p=-\frac{7}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p^{2}=\frac{49}{9}
Whakawehea ngā taha e rua ki te 9.
p^{2}-\frac{49}{9}=0
Tangohia te \frac{49}{9} mai i ngā taha e rua.
p=\frac{0±\sqrt{0^{2}-4\left(-\frac{49}{9}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{49}{9} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\left(-\frac{49}{9}\right)}}{2}
Pūrua 0.
p=\frac{0±\sqrt{\frac{196}{9}}}{2}
Whakareatia -4 ki te -\frac{49}{9}.
p=\frac{0±\frac{14}{3}}{2}
Tuhia te pūtakerua o te \frac{196}{9}.
p=\frac{7}{3}
Nā, me whakaoti te whārite p=\frac{0±\frac{14}{3}}{2} ina he tāpiri te ±.
p=-\frac{7}{3}
Nā, me whakaoti te whārite p=\frac{0±\frac{14}{3}}{2} ina he tango te ±.
p=\frac{7}{3} p=-\frac{7}{3}
Kua oti te whārite te whakatau.