Whakaoti mō n
n = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
n = \frac{5}{2} = 2\frac{1}{2} = 2.5
Tohaina
Kua tāruatia ki te papatopenga
9n^{2}-23n+20-3n^{2}=0
Tangohia te 3n^{2} mai i ngā taha e rua.
6n^{2}-23n+20=0
Pahekotia te 9n^{2} me -3n^{2}, ka 6n^{2}.
a+b=-23 ab=6\times 20=120
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6n^{2}+an+bn+20. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-120 -2,-60 -3,-40 -4,-30 -5,-24 -6,-20 -8,-15 -10,-12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 120.
-1-120=-121 -2-60=-62 -3-40=-43 -4-30=-34 -5-24=-29 -6-20=-26 -8-15=-23 -10-12=-22
Tātaihia te tapeke mō ia takirua.
a=-15 b=-8
Ko te otinga te takirua ka hoatu i te tapeke -23.
\left(6n^{2}-15n\right)+\left(-8n+20\right)
Tuhia anō te 6n^{2}-23n+20 hei \left(6n^{2}-15n\right)+\left(-8n+20\right).
3n\left(2n-5\right)-4\left(2n-5\right)
Tauwehea te 3n i te tuatahi me te -4 i te rōpū tuarua.
\left(2n-5\right)\left(3n-4\right)
Whakatauwehea atu te kīanga pātahi 2n-5 mā te whakamahi i te āhuatanga tātai tohatoha.
n=\frac{5}{2} n=\frac{4}{3}
Hei kimi otinga whārite, me whakaoti te 2n-5=0 me te 3n-4=0.
9n^{2}-23n+20-3n^{2}=0
Tangohia te 3n^{2} mai i ngā taha e rua.
6n^{2}-23n+20=0
Pahekotia te 9n^{2} me -3n^{2}, ka 6n^{2}.
n=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\times 6\times 20}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -23 mō b, me 20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-23\right)±\sqrt{529-4\times 6\times 20}}{2\times 6}
Pūrua -23.
n=\frac{-\left(-23\right)±\sqrt{529-24\times 20}}{2\times 6}
Whakareatia -4 ki te 6.
n=\frac{-\left(-23\right)±\sqrt{529-480}}{2\times 6}
Whakareatia -24 ki te 20.
n=\frac{-\left(-23\right)±\sqrt{49}}{2\times 6}
Tāpiri 529 ki te -480.
n=\frac{-\left(-23\right)±7}{2\times 6}
Tuhia te pūtakerua o te 49.
n=\frac{23±7}{2\times 6}
Ko te tauaro o -23 ko 23.
n=\frac{23±7}{12}
Whakareatia 2 ki te 6.
n=\frac{30}{12}
Nā, me whakaoti te whārite n=\frac{23±7}{12} ina he tāpiri te ±. Tāpiri 23 ki te 7.
n=\frac{5}{2}
Whakahekea te hautanga \frac{30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
n=\frac{16}{12}
Nā, me whakaoti te whārite n=\frac{23±7}{12} ina he tango te ±. Tango 7 mai i 23.
n=\frac{4}{3}
Whakahekea te hautanga \frac{16}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
n=\frac{5}{2} n=\frac{4}{3}
Kua oti te whārite te whakatau.
9n^{2}-23n+20-3n^{2}=0
Tangohia te 3n^{2} mai i ngā taha e rua.
6n^{2}-23n+20=0
Pahekotia te 9n^{2} me -3n^{2}, ka 6n^{2}.
6n^{2}-23n=-20
Tangohia te 20 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{6n^{2}-23n}{6}=-\frac{20}{6}
Whakawehea ngā taha e rua ki te 6.
n^{2}-\frac{23}{6}n=-\frac{20}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
n^{2}-\frac{23}{6}n=-\frac{10}{3}
Whakahekea te hautanga \frac{-20}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n^{2}-\frac{23}{6}n+\left(-\frac{23}{12}\right)^{2}=-\frac{10}{3}+\left(-\frac{23}{12}\right)^{2}
Whakawehea te -\frac{23}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{23}{12}. Nā, tāpiria te pūrua o te -\frac{23}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-\frac{23}{6}n+\frac{529}{144}=-\frac{10}{3}+\frac{529}{144}
Pūruatia -\frac{23}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-\frac{23}{6}n+\frac{529}{144}=\frac{49}{144}
Tāpiri -\frac{10}{3} ki te \frac{529}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n-\frac{23}{12}\right)^{2}=\frac{49}{144}
Tauwehea n^{2}-\frac{23}{6}n+\frac{529}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{23}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{23}{12}=\frac{7}{12} n-\frac{23}{12}=-\frac{7}{12}
Whakarūnātia.
n=\frac{5}{2} n=\frac{4}{3}
Me tāpiri \frac{23}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}