Whakaoti mō n
n = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
n=0
Tohaina
Kua tāruatia ki te papatopenga
n\left(9n+21\right)=0
Tauwehea te n.
n=0 n=-\frac{7}{3}
Hei kimi otinga whārite, me whakaoti te n=0 me te 9n+21=0.
9n^{2}+21n=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-21±\sqrt{21^{2}}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 21 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-21±21}{2\times 9}
Tuhia te pūtakerua o te 21^{2}.
n=\frac{-21±21}{18}
Whakareatia 2 ki te 9.
n=\frac{0}{18}
Nā, me whakaoti te whārite n=\frac{-21±21}{18} ina he tāpiri te ±. Tāpiri -21 ki te 21.
n=0
Whakawehe 0 ki te 18.
n=-\frac{42}{18}
Nā, me whakaoti te whārite n=\frac{-21±21}{18} ina he tango te ±. Tango 21 mai i -21.
n=-\frac{7}{3}
Whakahekea te hautanga \frac{-42}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
n=0 n=-\frac{7}{3}
Kua oti te whārite te whakatau.
9n^{2}+21n=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{9n^{2}+21n}{9}=\frac{0}{9}
Whakawehea ngā taha e rua ki te 9.
n^{2}+\frac{21}{9}n=\frac{0}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
n^{2}+\frac{7}{3}n=\frac{0}{9}
Whakahekea te hautanga \frac{21}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
n^{2}+\frac{7}{3}n=0
Whakawehe 0 ki te 9.
n^{2}+\frac{7}{3}n+\left(\frac{7}{6}\right)^{2}=\left(\frac{7}{6}\right)^{2}
Whakawehea te \frac{7}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{6}. Nā, tāpiria te pūrua o te \frac{7}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+\frac{7}{3}n+\frac{49}{36}=\frac{49}{36}
Pūruatia \frac{7}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(n+\frac{7}{6}\right)^{2}=\frac{49}{36}
Tauwehea n^{2}+\frac{7}{3}n+\frac{49}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{7}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{7}{6}=\frac{7}{6} n+\frac{7}{6}=-\frac{7}{6}
Whakarūnātia.
n=0 n=-\frac{7}{3}
Me tango \frac{7}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}