Tauwehe
\left(3m-7\right)\left(3m+4\right)
Aromātai
\left(3m-7\right)\left(3m+4\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-9 ab=9\left(-28\right)=-252
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 9m^{2}+am+bm-28. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-252 2,-126 3,-84 4,-63 6,-42 7,-36 9,-28 12,-21 14,-18
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -252.
1-252=-251 2-126=-124 3-84=-81 4-63=-59 6-42=-36 7-36=-29 9-28=-19 12-21=-9 14-18=-4
Tātaihia te tapeke mō ia takirua.
a=-21 b=12
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(9m^{2}-21m\right)+\left(12m-28\right)
Tuhia anō te 9m^{2}-9m-28 hei \left(9m^{2}-21m\right)+\left(12m-28\right).
3m\left(3m-7\right)+4\left(3m-7\right)
Tauwehea te 3m i te tuatahi me te 4 i te rōpū tuarua.
\left(3m-7\right)\left(3m+4\right)
Whakatauwehea atu te kīanga pātahi 3m-7 mā te whakamahi i te āhuatanga tātai tohatoha.
9m^{2}-9m-28=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 9\left(-28\right)}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-9\right)±\sqrt{81-4\times 9\left(-28\right)}}{2\times 9}
Pūrua -9.
m=\frac{-\left(-9\right)±\sqrt{81-36\left(-28\right)}}{2\times 9}
Whakareatia -4 ki te 9.
m=\frac{-\left(-9\right)±\sqrt{81+1008}}{2\times 9}
Whakareatia -36 ki te -28.
m=\frac{-\left(-9\right)±\sqrt{1089}}{2\times 9}
Tāpiri 81 ki te 1008.
m=\frac{-\left(-9\right)±33}{2\times 9}
Tuhia te pūtakerua o te 1089.
m=\frac{9±33}{2\times 9}
Ko te tauaro o -9 ko 9.
m=\frac{9±33}{18}
Whakareatia 2 ki te 9.
m=\frac{42}{18}
Nā, me whakaoti te whārite m=\frac{9±33}{18} ina he tāpiri te ±. Tāpiri 9 ki te 33.
m=\frac{7}{3}
Whakahekea te hautanga \frac{42}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
m=-\frac{24}{18}
Nā, me whakaoti te whārite m=\frac{9±33}{18} ina he tango te ±. Tango 33 mai i 9.
m=-\frac{4}{3}
Whakahekea te hautanga \frac{-24}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9m^{2}-9m-28=9\left(m-\frac{7}{3}\right)\left(m-\left(-\frac{4}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{7}{3} mō te x_{1} me te -\frac{4}{3} mō te x_{2}.
9m^{2}-9m-28=9\left(m-\frac{7}{3}\right)\left(m+\frac{4}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
9m^{2}-9m-28=9\times \frac{3m-7}{3}\left(m+\frac{4}{3}\right)
Tango \frac{7}{3} mai i m mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9m^{2}-9m-28=9\times \frac{3m-7}{3}\times \frac{3m+4}{3}
Tāpiri \frac{4}{3} ki te m mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9m^{2}-9m-28=9\times \frac{\left(3m-7\right)\left(3m+4\right)}{3\times 3}
Whakareatia \frac{3m-7}{3} ki te \frac{3m+4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9m^{2}-9m-28=9\times \frac{\left(3m-7\right)\left(3m+4\right)}{9}
Whakareatia 3 ki te 3.
9m^{2}-9m-28=\left(3m-7\right)\left(3m+4\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}