Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

m\left(9m+1\right)
Tauwehea te m.
9m^{2}+m=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-1±\sqrt{1^{2}}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-1±1}{2\times 9}
Tuhia te pūtakerua o te 1^{2}.
m=\frac{-1±1}{18}
Whakareatia 2 ki te 9.
m=\frac{0}{18}
Nā, me whakaoti te whārite m=\frac{-1±1}{18} ina he tāpiri te ±. Tāpiri -1 ki te 1.
m=0
Whakawehe 0 ki te 18.
m=-\frac{2}{18}
Nā, me whakaoti te whārite m=\frac{-1±1}{18} ina he tango te ±. Tango 1 mai i -1.
m=-\frac{1}{9}
Whakahekea te hautanga \frac{-2}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
9m^{2}+m=9m\left(m-\left(-\frac{1}{9}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -\frac{1}{9} mō te x_{2}.
9m^{2}+m=9m\left(m+\frac{1}{9}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
9m^{2}+m=9m\times \frac{9m+1}{9}
Tāpiri \frac{1}{9} ki te m mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
9m^{2}+m=m\left(9m+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 9 me te 9.