Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

9\left(c^{2}-2c\right)
Tauwehea te 9.
c\left(c-2\right)
Whakaarohia te c^{2}-2c. Tauwehea te c.
9c\left(c-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
9c^{2}-18c=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
c=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2\times 9}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-\left(-18\right)±18}{2\times 9}
Tuhia te pūtakerua o te \left(-18\right)^{2}.
c=\frac{18±18}{2\times 9}
Ko te tauaro o -18 ko 18.
c=\frac{18±18}{18}
Whakareatia 2 ki te 9.
c=\frac{36}{18}
Nā, me whakaoti te whārite c=\frac{18±18}{18} ina he tāpiri te ±. Tāpiri 18 ki te 18.
c=2
Whakawehe 36 ki te 18.
c=\frac{0}{18}
Nā, me whakaoti te whārite c=\frac{18±18}{18} ina he tango te ±. Tango 18 mai i 18.
c=0
Whakawehe 0 ki te 18.
9c^{2}-18c=9\left(c-2\right)c
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te 0 mō te x_{2}.