Whakaoti mō a
a = \frac{180}{41} = 4\frac{16}{41} \approx 4.390243902
Tohaina
Kua tāruatia ki te papatopenga
\left(9a-20\right)^{2}=\left(\sqrt{400-a^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
81a^{2}-360a+400=\left(\sqrt{400-a^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(9a-20\right)^{2}.
81a^{2}-360a+400=400-a^{2}
Tātaihia te \sqrt{400-a^{2}} mā te pū o 2, kia riro ko 400-a^{2}.
81a^{2}-360a+400-400=-a^{2}
Tangohia te 400 mai i ngā taha e rua.
81a^{2}-360a=-a^{2}
Tangohia te 400 i te 400, ka 0.
81a^{2}-360a+a^{2}=0
Me tāpiri te a^{2} ki ngā taha e rua.
82a^{2}-360a=0
Pahekotia te 81a^{2} me a^{2}, ka 82a^{2}.
a\left(82a-360\right)=0
Tauwehea te a.
a=0 a=\frac{180}{41}
Hei kimi otinga whārite, me whakaoti te a=0 me te 82a-360=0.
9\times 0-20=\sqrt{400-0^{2}}
Whakakapia te 0 mō te a i te whārite 9a-20=\sqrt{400-a^{2}}.
-20=20
Whakarūnātia. Ko te uara a=0 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
9\times \frac{180}{41}-20=\sqrt{400-\left(\frac{180}{41}\right)^{2}}
Whakakapia te \frac{180}{41} mō te a i te whārite 9a-20=\sqrt{400-a^{2}}.
\frac{800}{41}=\frac{800}{41}
Whakarūnātia. Ko te uara a=\frac{180}{41} kua ngata te whārite.
a=\frac{180}{41}
Ko te whārite 9a-20=\sqrt{400-a^{2}} he rongoā ahurei.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}