Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(9a-20\right)^{2}=\left(\sqrt{400-a^{2}}\right)^{2}
Pūruatia ngā taha e rua o te whārite.
81a^{2}-360a+400=\left(\sqrt{400-a^{2}}\right)^{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(9a-20\right)^{2}.
81a^{2}-360a+400=400-a^{2}
Tātaihia te \sqrt{400-a^{2}} mā te pū o 2, kia riro ko 400-a^{2}.
81a^{2}-360a+400-400=-a^{2}
Tangohia te 400 mai i ngā taha e rua.
81a^{2}-360a=-a^{2}
Tangohia te 400 i te 400, ka 0.
81a^{2}-360a+a^{2}=0
Me tāpiri te a^{2} ki ngā taha e rua.
82a^{2}-360a=0
Pahekotia te 81a^{2} me a^{2}, ka 82a^{2}.
a\left(82a-360\right)=0
Tauwehea te a.
a=0 a=\frac{180}{41}
Hei kimi otinga whārite, me whakaoti te a=0 me te 82a-360=0.
9\times 0-20=\sqrt{400-0^{2}}
Whakakapia te 0 mō te a i te whārite 9a-20=\sqrt{400-a^{2}}.
-20=20
Whakarūnātia. Ko te uara a=0 kāore e ngata ana ki te whārite nā te mea e rerekē ngā tohu o te taha maui me te taha katau.
9\times \frac{180}{41}-20=\sqrt{400-\left(\frac{180}{41}\right)^{2}}
Whakakapia te \frac{180}{41} mō te a i te whārite 9a-20=\sqrt{400-a^{2}}.
\frac{800}{41}=\frac{800}{41}
Whakarūnātia. Ko te uara a=\frac{180}{41} kua ngata te whārite.
a=\frac{180}{41}
Ko te whārite 9a-20=\sqrt{400-a^{2}} he rongoā ahurei.