Whakaoti mō a
a=\frac{5+\sqrt{11}i}{9}\approx 0.555555556+0.368513866i
a=\frac{-\sqrt{11}i+5}{9}\approx 0.555555556-0.368513866i
Tohaina
Kua tāruatia ki te papatopenga
9a^{2}-10a+4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 9\times 4}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, -10 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 9\times 4}}{2\times 9}
Pūrua -10.
a=\frac{-\left(-10\right)±\sqrt{100-36\times 4}}{2\times 9}
Whakareatia -4 ki te 9.
a=\frac{-\left(-10\right)±\sqrt{100-144}}{2\times 9}
Whakareatia -36 ki te 4.
a=\frac{-\left(-10\right)±\sqrt{-44}}{2\times 9}
Tāpiri 100 ki te -144.
a=\frac{-\left(-10\right)±2\sqrt{11}i}{2\times 9}
Tuhia te pūtakerua o te -44.
a=\frac{10±2\sqrt{11}i}{2\times 9}
Ko te tauaro o -10 ko 10.
a=\frac{10±2\sqrt{11}i}{18}
Whakareatia 2 ki te 9.
a=\frac{10+2\sqrt{11}i}{18}
Nā, me whakaoti te whārite a=\frac{10±2\sqrt{11}i}{18} ina he tāpiri te ±. Tāpiri 10 ki te 2i\sqrt{11}.
a=\frac{5+\sqrt{11}i}{9}
Whakawehe 10+2i\sqrt{11} ki te 18.
a=\frac{-2\sqrt{11}i+10}{18}
Nā, me whakaoti te whārite a=\frac{10±2\sqrt{11}i}{18} ina he tango te ±. Tango 2i\sqrt{11} mai i 10.
a=\frac{-\sqrt{11}i+5}{9}
Whakawehe 10-2i\sqrt{11} ki te 18.
a=\frac{5+\sqrt{11}i}{9} a=\frac{-\sqrt{11}i+5}{9}
Kua oti te whārite te whakatau.
9a^{2}-10a+4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9a^{2}-10a+4-4=-4
Me tango 4 mai i ngā taha e rua o te whārite.
9a^{2}-10a=-4
Mā te tango i te 4 i a ia ake anō ka toe ko te 0.
\frac{9a^{2}-10a}{9}=-\frac{4}{9}
Whakawehea ngā taha e rua ki te 9.
a^{2}-\frac{10}{9}a=-\frac{4}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
a^{2}-\frac{10}{9}a+\left(-\frac{5}{9}\right)^{2}=-\frac{4}{9}+\left(-\frac{5}{9}\right)^{2}
Whakawehea te -\frac{10}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{9}. Nā, tāpiria te pūrua o te -\frac{5}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-\frac{10}{9}a+\frac{25}{81}=-\frac{4}{9}+\frac{25}{81}
Pūruatia -\frac{5}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}-\frac{10}{9}a+\frac{25}{81}=-\frac{11}{81}
Tāpiri -\frac{4}{9} ki te \frac{25}{81} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a-\frac{5}{9}\right)^{2}=-\frac{11}{81}
Tauwehea a^{2}-\frac{10}{9}a+\frac{25}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{5}{9}\right)^{2}}=\sqrt{-\frac{11}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-\frac{5}{9}=\frac{\sqrt{11}i}{9} a-\frac{5}{9}=-\frac{\sqrt{11}i}{9}
Whakarūnātia.
a=\frac{5+\sqrt{11}i}{9} a=\frac{-\sqrt{11}i+5}{9}
Me tāpiri \frac{5}{9} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}