Whakaoti mō a
a = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Tohaina
Kua tāruatia ki te papatopenga
a+b=24 ab=9\times 16=144
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 9a^{2}+aa+ba+16. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,144 2,72 3,48 4,36 6,24 8,18 9,16 12,12
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 144.
1+144=145 2+72=74 3+48=51 4+36=40 6+24=30 8+18=26 9+16=25 12+12=24
Tātaihia te tapeke mō ia takirua.
a=12 b=12
Ko te otinga te takirua ka hoatu i te tapeke 24.
\left(9a^{2}+12a\right)+\left(12a+16\right)
Tuhia anō te 9a^{2}+24a+16 hei \left(9a^{2}+12a\right)+\left(12a+16\right).
3a\left(3a+4\right)+4\left(3a+4\right)
Tauwehea te 3a i te tuatahi me te 4 i te rōpū tuarua.
\left(3a+4\right)\left(3a+4\right)
Whakatauwehea atu te kīanga pātahi 3a+4 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3a+4\right)^{2}
Tuhia anōtia hei pūrua huarua.
a=-\frac{4}{3}
Hei kimi i te otinga whārite, whakaotia te 3a+4=0.
9a^{2}+24a+16=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-24±\sqrt{24^{2}-4\times 9\times 16}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 24 mō b, me 16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-24±\sqrt{576-4\times 9\times 16}}{2\times 9}
Pūrua 24.
a=\frac{-24±\sqrt{576-36\times 16}}{2\times 9}
Whakareatia -4 ki te 9.
a=\frac{-24±\sqrt{576-576}}{2\times 9}
Whakareatia -36 ki te 16.
a=\frac{-24±\sqrt{0}}{2\times 9}
Tāpiri 576 ki te -576.
a=-\frac{24}{2\times 9}
Tuhia te pūtakerua o te 0.
a=-\frac{24}{18}
Whakareatia 2 ki te 9.
a=-\frac{4}{3}
Whakahekea te hautanga \frac{-24}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
9a^{2}+24a+16=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
9a^{2}+24a+16-16=-16
Me tango 16 mai i ngā taha e rua o te whārite.
9a^{2}+24a=-16
Mā te tango i te 16 i a ia ake anō ka toe ko te 0.
\frac{9a^{2}+24a}{9}=-\frac{16}{9}
Whakawehea ngā taha e rua ki te 9.
a^{2}+\frac{24}{9}a=-\frac{16}{9}
Mā te whakawehe ki te 9 ka wetekia te whakareanga ki te 9.
a^{2}+\frac{8}{3}a=-\frac{16}{9}
Whakahekea te hautanga \frac{24}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
a^{2}+\frac{8}{3}a+\left(\frac{4}{3}\right)^{2}=-\frac{16}{9}+\left(\frac{4}{3}\right)^{2}
Whakawehea te \frac{8}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{4}{3}. Nā, tāpiria te pūrua o te \frac{4}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+\frac{8}{3}a+\frac{16}{9}=\frac{-16+16}{9}
Pūruatia \frac{4}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}+\frac{8}{3}a+\frac{16}{9}=0
Tāpiri -\frac{16}{9} ki te \frac{16}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a+\frac{4}{3}\right)^{2}=0
Tauwehea a^{2}+\frac{8}{3}a+\frac{16}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{4}{3}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+\frac{4}{3}=0 a+\frac{4}{3}=0
Whakarūnātia.
a=-\frac{4}{3} a=-\frac{4}{3}
Me tango \frac{4}{3} mai i ngā taha e rua o te whārite.
a=-\frac{4}{3}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}