Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}=1-9
Tangohia te 9 mai i ngā taha e rua.
-x^{2}=-8
Tangohia te 9 i te 1, ka -8.
x^{2}=\frac{-8}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}=8
Ka taea te hautanga \frac{-8}{-1} te whakamāmā ki te 8 mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
x=2\sqrt{2} x=-2\sqrt{2}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
9-x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
8-x^{2}=0
Tangohia te 1 i te 9, ka 8.
-x^{2}+8=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 0 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times 8}}{2\left(-1\right)}
Pūrua 0.
x=\frac{0±\sqrt{4\times 8}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{0±\sqrt{32}}{2\left(-1\right)}
Whakareatia 4 ki te 8.
x=\frac{0±4\sqrt{2}}{2\left(-1\right)}
Tuhia te pūtakerua o te 32.
x=\frac{0±4\sqrt{2}}{-2}
Whakareatia 2 ki te -1.
x=-2\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{2}}{-2} ina he tāpiri te ±.
x=2\sqrt{2}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{2}}{-2} ina he tango te ±.
x=-2\sqrt{2} x=2\sqrt{2}
Kua oti te whārite te whakatau.