Whakaoti mō g
g=\frac{9}{2}-2q
Whakaoti mō q
q=-\frac{g}{2}+\frac{9}{4}
Tohaina
Kua tāruatia ki te papatopenga
6+6g-9+12q-15=9
Tangohia te 3 i te 9, ka 6.
-3+6g+12q-15=9
Tangohia te 9 i te 6, ka -3.
-18+6g+12q=9
Tangohia te 15 i te -3, ka -18.
6g+12q=9+18
Me tāpiri te 18 ki ngā taha e rua.
6g+12q=27
Tāpirihia te 9 ki te 18, ka 27.
6g=27-12q
Tangohia te 12q mai i ngā taha e rua.
\frac{6g}{6}=\frac{27-12q}{6}
Whakawehea ngā taha e rua ki te 6.
g=\frac{27-12q}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
g=\frac{9}{2}-2q
Whakawehe 27-12q ki te 6.
6+6g-9+12q-15=9
Tangohia te 3 i te 9, ka 6.
-3+6g+12q-15=9
Tangohia te 9 i te 6, ka -3.
-18+6g+12q=9
Tangohia te 15 i te -3, ka -18.
6g+12q=9+18
Me tāpiri te 18 ki ngā taha e rua.
6g+12q=27
Tāpirihia te 9 ki te 18, ka 27.
12q=27-6g
Tangohia te 6g mai i ngā taha e rua.
\frac{12q}{12}=\frac{27-6g}{12}
Whakawehea ngā taha e rua ki te 12.
q=\frac{27-6g}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
q=-\frac{g}{2}+\frac{9}{4}
Whakawehe 27-6g ki te 12.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}