Whakaoti mō x
x = \frac{\sqrt{393} + 19}{16} \approx 2.426514225
x=\frac{19-\sqrt{393}}{16}\approx -0.051514225
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
9 ( x ) = \frac { x ^ { 2 } + x + 1 } { x - 2 }
Tohaina
Kua tāruatia ki te papatopenga
9x\left(x-2\right)=x^{2}+x+1
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
9x^{2}-18x=x^{2}+x+1
Whakamahia te āhuatanga tohatoha hei whakarea te 9x ki te x-2.
9x^{2}-18x-x^{2}=x+1
Tangohia te x^{2} mai i ngā taha e rua.
8x^{2}-18x=x+1
Pahekotia te 9x^{2} me -x^{2}, ka 8x^{2}.
8x^{2}-18x-x=1
Tangohia te x mai i ngā taha e rua.
8x^{2}-19x=1
Pahekotia te -18x me -x, ka -19x.
8x^{2}-19x-1=0
Tangohia te 1 mai i ngā taha e rua.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 8\left(-1\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, -19 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 8\left(-1\right)}}{2\times 8}
Pūrua -19.
x=\frac{-\left(-19\right)±\sqrt{361-32\left(-1\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{-\left(-19\right)±\sqrt{361+32}}{2\times 8}
Whakareatia -32 ki te -1.
x=\frac{-\left(-19\right)±\sqrt{393}}{2\times 8}
Tāpiri 361 ki te 32.
x=\frac{19±\sqrt{393}}{2\times 8}
Ko te tauaro o -19 ko 19.
x=\frac{19±\sqrt{393}}{16}
Whakareatia 2 ki te 8.
x=\frac{\sqrt{393}+19}{16}
Nā, me whakaoti te whārite x=\frac{19±\sqrt{393}}{16} ina he tāpiri te ±. Tāpiri 19 ki te \sqrt{393}.
x=\frac{19-\sqrt{393}}{16}
Nā, me whakaoti te whārite x=\frac{19±\sqrt{393}}{16} ina he tango te ±. Tango \sqrt{393} mai i 19.
x=\frac{\sqrt{393}+19}{16} x=\frac{19-\sqrt{393}}{16}
Kua oti te whārite te whakatau.
9x\left(x-2\right)=x^{2}+x+1
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
9x^{2}-18x=x^{2}+x+1
Whakamahia te āhuatanga tohatoha hei whakarea te 9x ki te x-2.
9x^{2}-18x-x^{2}=x+1
Tangohia te x^{2} mai i ngā taha e rua.
8x^{2}-18x=x+1
Pahekotia te 9x^{2} me -x^{2}, ka 8x^{2}.
8x^{2}-18x-x=1
Tangohia te x mai i ngā taha e rua.
8x^{2}-19x=1
Pahekotia te -18x me -x, ka -19x.
\frac{8x^{2}-19x}{8}=\frac{1}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}-\frac{19}{8}x=\frac{1}{8}
Mā te whakawehe ki te 8 ka wetekia te whakareanga ki te 8.
x^{2}-\frac{19}{8}x+\left(-\frac{19}{16}\right)^{2}=\frac{1}{8}+\left(-\frac{19}{16}\right)^{2}
Whakawehea te -\frac{19}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{19}{16}. Nā, tāpiria te pūrua o te -\frac{19}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{1}{8}+\frac{361}{256}
Pūruatia -\frac{19}{16} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{19}{8}x+\frac{361}{256}=\frac{393}{256}
Tāpiri \frac{1}{8} ki te \frac{361}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{19}{16}\right)^{2}=\frac{393}{256}
Tauwehea x^{2}-\frac{19}{8}x+\frac{361}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{16}\right)^{2}}=\sqrt{\frac{393}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{19}{16}=\frac{\sqrt{393}}{16} x-\frac{19}{16}=-\frac{\sqrt{393}}{16}
Whakarūnātia.
x=\frac{\sqrt{393}+19}{16} x=\frac{19-\sqrt{393}}{16}
Me tāpiri \frac{19}{16} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}